Math 678. Homework 6 Solutions.

\#1

$$
x_{1} u_{x_{1}}+2 x_{2} u_{x_{2}}+u_{x_{3}}=3 u, u\left(x_{1}, x_{2}, 0\right)=g\left(x_{1}, x_{2}\right)
$$

First we identify $F(p, z, x)=x_{1} p_{1}+2 x_{2} p_{2}+p_{3}-3 z=0$. This gives $F_{p}=$ $\left(x_{1}, 2 x_{2}, 1\right), F_{x}=\left(p_{1}, 2 p_{2}, 0\right), F_{z}=-3$. The CE system looks like

$$
\left\{\begin{array}{l}
\dot{x}(s)=F_{p} \\
\dot{z}(s)=F_{p} \cdot p
\end{array}=\left\{\begin{array}{l}
\dot{x}_{1}(s)=x_{1}, \dot{x}_{2}(s)=2 x_{2}, \dot{x}_{3}(s)=1 \\
\dot{z}(s)=x_{1} p_{1}+2 x_{2} p_{2}+p_{3}=3 z
\end{array}\right.\right.
$$

Initial conditions: $x(0)=\left(x_{1}^{0}, x_{2}^{0}, 0\right), z(0)=g\left(x_{1}^{0}, x_{2}^{0}\right)$. Integrating the CE system, we get

$$
x_{1}=x_{1}^{0} e^{s}, \quad x_{2}=x_{2}^{0} e^{2 s}, \quad x_{3}=s, \quad z(s)=g\left(x_{1}^{0}, x_{2}^{0}\right) e^{3 s}
$$

Eliminating the initial conditions and s, we obtain

$$
u(x, t)=z(s)=g\left(x_{1} e^{-x_{3}}, x_{2} e^{-2 x_{3}}\right) e^{3 x_{3}}
$$

\#2

$$
u u_{x_{1}}+u_{x_{2}}=1, u\left(x_{1}, x_{1}\right)=x_{1} / 2
$$

Here $F(p, z, x)=z p_{1}+p_{2}-1=0$ and $F_{p}=(z, 1), F_{x}=0, F_{z}=p_{1}$. The CE system is thus:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=z \\
\dot{x}_{2}=1 \\
\dot{z}=z p_{1}+p_{2}=1
\end{array}\right.
$$

Imposing initial conditions $x(0)=\left(x_{1}^{0}, x_{1}^{0}\right), z(0)=x_{1}^{0} / 2$, we get

$$
x_{2}(s)=s+x_{1}^{0}, \quad z(s)=s+x_{1}^{0} / 2, \quad x_{1}(s)=s^{2} / 2+\left(x_{1}^{0} / 2\right) s+x_{1}^{0}
$$

This implies $s=x_{2}-x_{1}^{0}$ and $x_{1}^{0}=\frac{2 x_{1}-x_{2}^{2}}{2-x_{2}}$ and hence

$$
u(x, t)=z(s)=x_{2}-\frac{2 x_{1}-x_{2}^{2}}{2\left(2-x_{2}\right)}
$$

\#3

$$
\left\{\begin{array}{l}
u_{x}+x u_{t}=0 \\
u(x, 0)=0 \\
u(0, t)=t
\end{array}\right.
$$

Applying Laplace transform in the time domain to both sides and denoting $\mathcal{L}(u)=F(s)$, we get

$$
\begin{aligned}
& F_{x}(x, s)+x(s F(x, s)-F(x, 0))=0 \\
& F(x, 0)=0, F(0, s)=\frac{1}{s^{2}}
\end{aligned}
$$

Hence the equation becomes $F_{x}(x, s)=-x s F(x, s)$ which after integration gives $F(x, s)=C(s) e^{-s x^{2} / 2}$ and since at $x=0$ the value of $F(0, s)=\frac{1}{s^{2}}=C$, we get the formula $F(x, s)=\frac{e^{-s x^{2} / 2}}{s^{2}}$. Using the table of Laplace transforms, we see that the solution can be computed as

$$
u(x, t)=\left(t-\frac{x^{2}}{2}\right) u\left(t-\frac{x^{2}}{2}\right)
$$

where $u\left(t-x^{2} / 2\right)$ is a step function, equals to 1 as $t-x^{2} / 2>0$ and zero otherwise.

