Math 678. Homework 5 Solutions.

\#1

Consider a subsolution of the heat equation $v_{t}-\Delta v \leq 0$ in U_{T}.
(a) The proof follows the argument given in Theorem 3, p.53-54, with the exception being that $\phi^{\prime}(r) \geq 0$, from where it follows that

$$
v(x, t) \leq \frac{1}{4 r^{n}} \iint_{E(x, t ; r} v(y, s) \frac{|x-y|^{2}}{(t-s)^{2}} d y d s
$$

for all heat balls $E(x, t ; r) \subset U_{T}$.
(b) As in Theorem 4, it follows that $\max _{\bar{U}_{T}} v=\max _{U_{T}} v$. Indeed, suppose there is a point $\left(x_{0}, t_{0}\right)$ in U_{T} where the function value is maximized on the entire closed domain \bar{U}_{T}. Then there is a sufficiently small heat ball around it where from the above we will have $M=v\left(x_{0}, t_{0}\right) \leq \frac{1}{4 r^{n}} \iint_{E(x, t ; r} v(y, s) \frac{|x-y|^{2}}{(t-s)^{2}} d y d s \leq$ M. Equality is only possible when $u \equiv M$ in the heat ball. Then we can cover the domain with such balls as in the proof of Theorem 4 and conclusion follows.
(c) Let $v=\phi(u)$ with ϕ being convex and u a solution to the heat equation. Notice that

$$
\begin{aligned}
& v_{t}=\phi^{\prime}(u) u_{t} \\
& \Delta v=\phi^{\prime \prime}(u) \sum_{i=1}^{n} u_{x_{i}}^{2}+\phi^{\prime}(u) \Delta u=\phi^{\prime \prime}(u) \sum_{i=1}^{n} u_{x_{i}}^{2}
\end{aligned}
$$

Since $\phi^{\prime \prime}(u) \geq 0$, we observe that $\Delta v \geq v_{t}$, so v is a subsolution.
(d) You can verify this directly, which is a tedious but straightforward calculation. Alternatively, you may notice that both $|\cdot|^{2} \operatorname{and}(\cdot)^{2}$ are smooth and convex, with $D u$ and u being solutions to the heat equation, and apply the result of (c).

\#2

Consider $u_{x_{1}}^{2} u_{x_{1} x_{1}}+2 u_{x_{1}} u_{x_{2}} u_{x_{1} x_{2}}+u_{x_{2}}^{2} u_{x_{2} x_{2}}=0$ and separate the variables using $u(x, y)=v\left(x_{1}\right)+w\left(x_{2}\right)$. Plug this into the equation to get

$$
\left(v^{\prime}\right)^{2} v^{\prime \prime}=-\left(w^{\prime}\right)^{2} w^{\prime \prime}=\text { const }=\lambda
$$

This gives a system of ODEs:

$$
\left\{\begin{array} { l }
{ (v ^ { \prime }) ^ { 2 } v ^ { \prime \prime } = \lambda } \\
{ - (w ^ { \prime }) ^ { 2 } w ^ { \prime } = \lambda }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ (v ^ { \prime }) ^ { 3 } / 3 = \lambda x _ { 1 } + C _ { 1 } } \\
{ (w ^ { \prime }) ^ { 3 } / 3 = - \lambda x _ { 2 } + C _ { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
v^{\prime}=\left(3 \lambda x_{1}+C_{1}\right)^{1 / 3} \\
w^{\prime}=\left(-3 \lambda x_{2}+C_{2}\right)^{1 / 3}
\end{array}\right.\right.\right.
$$

which after integration yields particular solutions of the form: $v\left(x_{1}\right)=x_{1}^{4 / 3}, w\left(x_{2}\right)=$ $C_{2} x_{2}^{4 / 3}$, where we made the easiest choice of the constants of integration. So a
particular nontrivial solution of the original equation can be written for instance as $u\left(x_{1}, x_{2}\right)=x_{1}^{4 / 3}-x_{2}^{4 / 3}$.

\#3

Plug in $v(x-\sigma t)$ into the equation to get $-\sigma v^{\prime}(x-\sigma t)-v^{\prime \prime}(x-\sigma t)=f(v(x-\sigma t))$. which is equivalent to $v^{\prime \prime} v^{\prime}+\sigma\left(v^{\prime}\right)^{2}+f(v) v^{\prime}=0$. After integration we get (for $\left.f(v)=-2 v^{3}+3 v^{2}-v\right):$

$$
\left(v^{\prime}\right)^{2} / 2+\sigma \int_{-\infty}^{s}\left(v^{\prime}\right)^{2}-v^{4} / 2+v^{3}-v^{2} / 2=C
$$

Consider the limit when $s \rightarrow \infty$, then by employing the boundary conditions we get $\sigma \int_{-\infty}^{\infty}\left(v^{\prime}\right)^{2}=C$ and then similarly for $s \rightarrow-\infty, 0=\sigma \int_{-\infty}^{-\infty}\left(v^{\prime}\right)^{2}=C$. Hence $\sigma \int_{-\infty}^{\infty}\left(v^{\prime}\right)^{2}=0$, which implies $\sigma=0$.

Hence we have to solve the following equation in v :

$$
\left(v^{\prime}\right)^{2} / 2-v^{4} / 2+v^{3}-v^{2} / 2=0
$$

Here is how:

$$
\begin{aligned}
& \left(v^{\prime}\right)^{2} / 2=v^{4} / 2-v^{3}+v^{2} / 2=v^{2}(v-1)^{2} / 2 \\
& v^{\prime}= \pm v(v-1) \\
& \left(\frac{1}{v-1}-\frac{1}{v}\right) d v=d s \\
& \ln \left|\frac{v-1}{v}\right|= \pm s+C
\end{aligned}
$$

The only solution that satisfies the boundary conditions is $v=\frac{1}{1-C e^{-s}}$. Note that $v \rightarrow 1, s \rightarrow \infty$ and $v \rightarrow 0, s \rightarrow-\infty$ for any choice of C. This solution can be verified to satisfy $-v_{s s}=f(v)$ and is a degenerate case of a traveling wave.

\#4

By Duhamel's Principle, the solution of the nonhomogeneous problem is obtained as

$$
u(x, t)=\int_{0}^{t} u(x, t ; s) d s
$$

where $u(x, t ; s)$ is the solution to the homogeneous BIVP problem on the interval $[0,1]$:

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=0 \\
u(\cdot, s)=x^{2}(1-x) \\
u_{t}(\cdot, s)=x \\
u_{x}(0, \cdot)=0 \\
u(1, \cdot)=0
\end{array}\right.
$$

This problem can be solved by separation of variables: $u(x, t)=v(t) w(x)$, which gives

$$
\frac{v^{\prime \prime}}{v}=\frac{w^{\prime \prime}}{w}=-\lambda
$$

With the boundary data given, the solution exists when $\lambda=-\pi^{2}(k+1 / 2)^{2}, w=$ $\cos (\pi x / 2+\pi k x)$. The solution is then represented as a series

$$
u(x, t ; s)=\sum_{k=1}^{\infty}\left[A_{k} \cos (\pi t / 2+\pi k t) \cos (\pi x / 2+\pi k x)+B_{k} \sin (\pi t / 2+\pi k t) \cos (\pi x / 2+\pi k x)\right]
$$

Plugging in the initial conditions, we get

$$
\begin{aligned}
& A_{k}=\tilde{A}_{k} \cos (\pi s / 2+\pi k s)-\tilde{B}_{k} \sin (\pi s / 2+\pi k s) /(\pi / 2+\pi k) \\
& B_{k}=\tilde{B}_{k} \sin (\pi s / 2+\pi k s)+\tilde{B}_{k} \cos (\pi s / 2+\pi k s) /(\pi / 2+\pi k)
\end{aligned}
$$

where $\tilde{A}_{k}, \tilde{B}_{k}$ are the Fourier coefficients for even extensions of the initial conditions:

$$
\begin{aligned}
& \tilde{A}_{k}=\int_{0}^{1} x^{2}(1-x) \cos (\pi x / 2+\pi k x) d x \\
& \tilde{B}_{k}=\int_{0}^{1} x \cos (\pi x / 2+\pi k x) d x
\end{aligned}
$$

so finally we get
$u(x, t)=\int_{0}^{t} \sum_{k=1}^{\infty}\left[A_{k} \cos (\pi t / 2+\pi k t) \cos (\pi x / 2+\pi k x)+B_{k} \sin (\pi t / 2+\pi k t) \cos (\pi x / 2+\pi k x)\right] d s$

