Math 678. Homework 2 Solutions.

\#3, p. 85

Following the proof of the mean value property, denote $\phi(r)=\underset{\partial B(0, r)}{f^{\prime}} u(y) d S(y)$ and use the same argument to show that $\phi^{\prime}(r)=\underset{B(0, r)}{f_{B(0, r)}} \Delta u(y) d S=-\underset{B}{f_{B}} f(y) d S$.
Then fix some $\epsilon>0$ and notice that $\phi(r)-\phi(\epsilon)=\int_{\epsilon}^{r} \phi^{\prime}(s) d s$, with $\phi(\epsilon) \rightarrow u(0)$ as $\epsilon \rightarrow 0$. Since $u=g$ on $\partial B(0, r), \phi(r)=\underset{\partial B(0, r)}{f_{i}} g(y) d S(y)$.

We can use polar coordinates and interchange the order of integration (leaving out the term that vanishes as $\epsilon \rightarrow 0$) to compute the righthand side:

$$
\begin{aligned}
& -\int_{\epsilon}^{r} \phi^{\prime}(s) d s=\int_{\epsilon}^{r} \frac{1}{s^{n-1} n \alpha(n)} \int_{B(0, s)} f(y) d S d s= \\
& \frac{1}{n \alpha(n)} \int_{\epsilon}^{r} \int_{0}^{s} \int_{\partial B(0, t)}^{r} \frac{f(y)}{s^{n-1}} d y d t d s=\frac{1}{n \alpha(n)} \int_{\epsilon}^{r} \int_{t}^{r} \int_{\partial B(0, t)} \frac{f(y)}{s^{n-1}} d y d s d t= \\
& \frac{1}{n \alpha(n)} \int_{\epsilon}^{r} \int_{\partial B(0, t)}^{r} \int_{t}^{r} \frac{f(y)}{s^{n-1}} d s d y d t=\frac{1}{n \alpha(n)} \int_{\epsilon}^{r} \int_{\partial B(0, t)} f(y) \int_{t}^{r} \frac{1}{s^{n-1}} d s d y d t= \\
& -\frac{1}{n(n-2) \alpha(n)} \int_{\epsilon}^{r} \int_{\partial B(0, t)} f(y)\left[\frac{1}{r^{n-2}}-\frac{1}{t^{n-2}}\right] d y d t= \\
& \frac{1}{n(n-2) \alpha(n)} \int_{B(0, r)} f(y)\left[\frac{1}{|y|^{n-2}}-\frac{1}{r^{n-2}}\right] d y
\end{aligned}
$$

As $\epsilon \rightarrow 0$, this leaves us with

$$
u(0)=\underset{\partial B(0, r)}{f^{\prime}} g(y) d S(y)+\frac{1}{n(n-2) \alpha(n)} \int_{B(0, r)} f(y)\left[\frac{1}{r^{n-2}}-\frac{1}{|y|^{n-2}}\right] d y
$$

\#5, p. 85 (a) Using the mean value property argument, we can show that for the same $\phi(r)$ as defined above, $\phi^{\prime}(r)=\frac{r}{n} f_{B(x, r)} \Delta v(y) d y \geq 0$. Let us write $\phi(r)-\phi(0)=\int_{0}^{r} \phi^{\prime}(s) d s \geq 0$, which means that $f_{\partial B(x, r)} v(y) d S(y)=\phi(r) \geq$ $\phi(0)=v(x)$. Then notice that

$$
\begin{aligned}
& \int_{B(x, r)} v(y) d S(y)=\int_{0}^{r} \int_{\partial B(x, s)} v(y) d S(y) d s= \\
& \int_{0}^{r} n \alpha(n) s^{n-1}[\underset{\partial B(x, s)}{f} v(y) d S(y)] d s \geq \\
& n \alpha(n)\left[\int_{0}^{r} s^{n-1} d s\right] v(x)=n \alpha(n) r^{n} v(x) / n=\alpha(n) r^{n} v(x)
\end{aligned}
$$

The conclusion follows.
(b) Suppose there is an interior maximum for $v(x)$ at x_{0}. Then $u\left(x_{0}\right)=$ $\max _{\bar{U}} u=M$ and by (a) for any ball $B\left(x_{0}, r\right), M=u\left(x_{0}\right) \leq \int_{B\left(x_{0}, r\right)} v(y) d y \leq$
M. Equality is achieved when $u \equiv M$ on $B\left(x_{0}, r\right)$. For a connected domain, it follows that $u \equiv M$ on \bar{U}, so maximum principle holds.
(c) Let $v(x)=f(u(x))$ with f-convex. Any convex function f is continuous, and satisfies Jensen's inequality on a bounded domain G :

$$
f\left(f_{G} u(x) d x\right) \leq f_{G} f(u(x)) d x
$$

If u is harmonic, $u(x)=f_{B(x, r)} u(y) d y$, so from Jensen's inequality, $f(u(x)) \leq$ $f_{B(x, r)} f(u(y)) d y$. So (a) holds even if the function is not smooth.

To show that the function is subharmonic according to the definition $-\Delta(f(u(x))) \leq$ 0 in the case the function $f \in C^{2}(U)$, we can use direct computation:
$-\Delta v=-\sum_{i=1}^{n} v_{x_{i} x_{i}}=-\sum_{i=1}^{n} f^{\prime \prime}(u) u_{x_{i}}^{2}-\sum_{i=1}^{n} f^{\prime}(u) u_{x_{i} x_{i}}=-f^{\prime \prime}(u) \sum_{i=1}^{n} u_{x_{i}}^{2}-f^{\prime}(u) \Delta u \leq 0$.
(d) You can notice $|D u|$ is harmonic for a harmonic function u (direct but tedious computation). Since $f(x)=|x|^{2}$ is a convex function on \mathbb{R}, we can use the result of (c), which proves that the function $|D u|^{2}$ is subharmonic.

You can also show this by direct computation:

$$
v_{x_{i} x_{i}}=\sum_{k=1}^{n}\left(2 u_{x_{i} x_{i}}^{2}+2 u_{x_{k} x_{i} x_{i}}\right) \geq 2 \sum_{k=1}^{n} u_{x_{k} x_{i} x_{i}}
$$

Summing over all i and noticing that $\sum_{i} \sum_{k} u_{x_{k} x_{i} x_{i}}=\sum_{k} \frac{\partial}{\partial x_{k}} \sum_{i} u_{x_{i} x_{i}}=0$, we get the conclusion.

Part II.

Consider any ball $B(x, r) \subset U$, a function $v \in C(U)$ such that $v(x) \leq$ $f_{B(x, r)} v d y$ and a harmonic function u defined on a domain that includes this ball. Consider the difference $w=v-u$. Clearly, $w \leq 0$ on $\partial B(x, r)$. We need to show $w \leq 0$ in $B(x, r)$.

The function w is subharmonic on $B(x, r)$ in the sense that $w(x)=u(x)-$ $v(x) \leq f_{B(x, r)} w(y) d y$, continuous on $B(x, r)$ and hence satisfies the strong, and hence the weak maximum principle, as shown in $5(\mathrm{~b})$ above. So $\max _{\bar{B}(x, r)}(w)=$ $\max _{\partial B(x, r)} w=0$, as needed.

