
Math 678. Homework 2 Solutions.

#3, p.85
Following the proof of the mean value property, denote φ(r) =

∫
−

∂B(0,r)
u(y)dS(y)

and use the same argument to show that φ′(r) =
∫
−

B(0,r)
∆u(y)dS = −

∫
−

B(0,r)
f(y)dS.

Then fix some ε > 0 and notice that φ(r)−φ(ε) =
∫ r

ε

φ′(s)ds, with φ(ε)→ u(0)

as ε→ 0. Since u = g on ∂B(0, r), φ(r) =
∫
−

∂B(0,r)
g(y)dS(y).

We can use polar coordinates and interchange the order of integration (leav-
ing out the term that vanishes as ε→ 0) to compute the righthand side:

−
∫ r

ε

φ′(s)ds =
∫ r

ε

1
sn−1nα(n)

∫
B(0,s)

f(y)dSds =

1
nα(n)

∫ r

ε

∫ s

0

∫
∂B(0,t)

f(y)
sn−1

dy dt ds =
1

nα(n)

∫ r

ε

∫ r

t

∫
∂B(0,t)

f(y)
sn−1

dy ds dt =

1
nα(n)

∫ r

ε

∫
∂B(0,t)

∫ r

t

f(y)
sn−1

ds dy dt =
1

nα(n)

∫ r

ε

∫
∂B(0,t)

f(y)
∫ r

t

1
sn−1

ds dy dt =

− 1
n(n− 2)α(n)

∫ r

ε

∫
∂B(0,t)

f(y)
[ 1
rn−2

− 1
tn−2

]
dy dt =

1
n(n− 2)α(n)

∫
B(0,r)

f(y)
[ 1
|y|n−2

− 1
rn−2

]
dy

As ε→ 0, this leaves us with

u(0) =
∫
−

∂B(0,r)
g(y)dS(y) +

1
n(n− 2)α(n)

∫
B(0,r)

f(y)
[ 1
rn−2

− 1
|y|n−2

]
dy

#5, p.85 (a) Using the mean value property argument, we can show that
for the same φ(r) as defined above, φ′(r) = r

n

∫
−B(x,r) ∆v(y)dy ≥ 0. Let us write

φ(r) − φ(0) =
∫ r

0

φ′(s)ds ≥ 0, which means that
∫
−∂B(x,r) v(y)dS(y) = φ(r) ≥

φ(0) = v(x). Then notice that∫
B(x,r)

v(y)dS(y) =
∫ r

0

∫
∂B(x,s)

v(y)dS(y)ds =∫ r

0

nα(n)sn−1
[ ∫
−

∂B(x,s)
v(y)dS(y)

]
ds ≥

nα(n)
[ ∫ r

0
sn−1ds

]
v(x) = nα(n)rnv(x)/n = α(n)rnv(x)

The conclusion follows.

(b) Suppose there is an interior maximum for v(x) at x0. Then u(x0) =
maxŪ u = M and by (a) for any ball B(x0, r), M = u(x0) ≤

∫
B(x0,r)

v(y)dy ≤

1



M . Equality is achieved when u ≡ M on B(x0, r). For a connected domain, it
follows that u ≡M on Ū , so maximum principle holds.

(c) Let v(x) = f(u(x)) with f -convex. Any convex function f is continuous,
and satisfies Jensen’s inequality on a bounded domain G:

f(
∫
−
G
u(x)dx) ≤

∫
−
G
f(u(x))dx

If u is harmonic, u(x) =
∫
−B(x,r) u(y)dy, so from Jensen’s inequality, f(u(x)) ≤∫

−B(x,r) f(u(y))dy. So (a) holds even if the function is not smooth.

To show that the function is subharmonic according to the definition−∆(f(u(x))) ≤
0 in the case the function f ∈ C2(U), we can use direct computation:

−∆v = −
n∑
i=1

vxixi
= −

n∑
i=1

f ′′(u)u2
xi
−

n∑
i=1

f ′(u)uxixi
= −f ′′(u)

n∑
i=1

u2
xi
−f ′(u)∆u ≤ 0.

(d) You can notice |Du| is harmonic for a harmonic function u (direct but
tedious computation). Since f(x) = |x|2 is a convex function on R, we can use
the result of (c), which proves that the function |Du|2 is subharmonic.

You can also show this by direct computation:

vxixi
=

n∑
k=1

(2u2
xixi

+ 2uxkxixi
) ≥ 2

n∑
k=1

uxkxixi
.

Summing over all i and noticing that
∑
i

∑
k

uxkxixi =
∑
k

∂

∂xk

∑
i

uxixi = 0,

we get the conclusion.

Part II.
Consider any ball B(x, r) ⊂ U , a function v ∈ C(U) such that v(x) ≤∫

−B(x,r) vdy and a harmonic function u defined on a domain that includes this
ball. Consider the difference w = v − u. Clearly, w ≤ 0 on ∂B(x, r). We need
to show w ≤ 0 in B(x, r).

The function w is subharmonic on B(x, r) in the sense that w(x) = u(x) −
v(x) ≤

∫
−B(x,r) w(y)dy, continuous on B(x, r) and hence satisfies the strong, and

hence the weak maximum principle, as shown in 5(b) above. So maxB̄(x,r)(w) =
max∂B(x,r) w = 0, as needed.
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