Math 678. Homework 1 Solutions.

\#2, p. 12

Think about circles denoting the partial derivative, with m consecutive circles representing an m-th order derivative in the corresponding variable. Dividers are placed between variables, and can be separated by m circles, with $m \geq 0$. If $m=0$, no derivative is taken in the corresponding variable. This gives a one-to-one correspondence between a pattern of k circles with $n-1$ dividers and a k-th order partial derivative of a function of n variables.

To give a simple example, let $n=5, k=3$. The derivative $\frac{\partial^{3}}{\partial x_{1} \partial x_{2} \partial x_{5}}$ can be represented as $\circ \circ \circ \| \mid \circ$. The derivative $\frac{\partial^{3}}{\partial x_{1} \partial x_{4}^{2}}$ can be represented as $\circ \mid \| \circ \circ \circ$ etc. The number of ways of inserting $n-1$ dividers within a row of k circles in this way to represent each partial derivative of k-th order is given by

$$
\binom{n+k-1}{k}=\binom{n+k-1}{n-1}
$$

Equality follows from the symmetry in the definition of the combination.

\#4, p. 13

To show (Leibniz's formula):

$$
D^{\alpha}(u v)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} D^{\beta} u D^{\alpha-\beta} v
$$

The proof goes by induction. First, notice it is obviously true for $|\alpha|=0$ (equivalence) and $|\alpha|=1$ (product rule). Suppose it holds for all $|\beta| \leq p$ and let $|\alpha|=p+1$, i.e. $\alpha=\beta+\gamma$ for some $|\beta|=p,|\gamma|=1$. All Greek letter represent a multiindex notation. Using the induction hypothesis and product rule,

$$
\begin{aligned}
& D^{\alpha}(u v)=D^{\gamma}\left(D^{\beta}(u v)\right)= \\
& D^{\gamma}\left(\sum_{\sigma \leq \beta}\binom{\beta}{\sigma} D^{\sigma} u D^{\beta-\sigma} v\right)= \\
& \sum_{\sigma \leq \beta}^{\sigma \leq \beta}\binom{\beta}{\sigma} D^{\gamma}\left(D^{\sigma} u D^{\beta-\sigma} v\right)= \\
& \sum_{\sigma \leq \beta}\binom{\beta}{\sigma}\left(D^{\omega} u D^{\alpha-\omega} v+D^{\sigma} u D^{\alpha-\sigma} v\right)
\end{aligned}
$$

where $\omega=\sigma+\gamma, \beta-\sigma=\alpha-\omega$. Now we can break this into two sums, and change variables in the second one, noticing that $\sigma \leq \beta$ is equivalent to $\omega \leq \alpha$. This results in

$$
\begin{gathered}
\sum_{\sigma \leq \beta}\binom{\beta}{\sigma} D^{\omega} u D^{\alpha-\omega} v+\sum_{\omega \leq \beta}\binom{\beta}{\omega} D^{\omega} u D^{\alpha-\omega} v= \\
\sum_{\omega \leq \alpha}\binom{\alpha-\gamma}{\omega-\gamma} D^{\omega} u D^{\alpha-\omega} v+\sum_{\omega \leq \alpha}\binom{\alpha-\gamma}{\omega} D^{\omega} u D^{\alpha-\omega} v
\end{gathered}
$$

The sought conclusion follows by employing Pascal's formula (valid for $|\gamma|=1$):

$$
\binom{\alpha-\gamma}{\omega-\gamma}+\binom{\alpha-\gamma}{\omega}=\binom{\alpha}{\omega}
$$

\#1, p. 85

$$
\left\{\begin{aligned}
u_{t}+b \cdot D u+c u & =0, & & t>0 \\
u & =g, & & t=0
\end{aligned}\right.
$$

Following the proof of the transport equation, we introduce $z(s)=u(x+s b, t+$ $s), s \in \mathbb{R}$. Then it is easy to see that $\dot{z}(s)=-c z(s)$, which means $z(s)=A e^{-c s}$. Since $z(0)=u(x, t), A=u(x, t)$. Now notice that $z(-t)=u(x-t b, 0)=$ $g(x-t b)$, so that $g(x-t b)=u(x, t) e^{c t}$, which means that

$$
u(x, t)=e^{-c t} g(x-t b)
$$

\#2 p. 85
To show: Laplace equation is rotation invariant.
Denote $v(x)=u(O x)$ and let $y=O x$. By chain rule, for any index i we have

$$
\frac{\partial v}{\partial x_{i}}=\sum_{j=1}^{n} \frac{\partial u}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}}=\sum_{j=1}^{n} \frac{\partial u}{\partial y_{j}} O_{j i}
$$

Since $O^{T} O=O O^{T}=I$ due to orthogonality,

$$
\sum_{i=1}^{n} O_{k i} O_{j i}=\left(O O^{T}\right)_{k j}=\delta_{i j}
$$

so that it is equal to 1 when $k=j$ and is zero otherwise.
By interchanging the order of summation, we easily see that

$$
\Delta v=\sum_{i=1}^{n} \frac{\partial v}{\partial x_{i}}=\sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} u}{\partial y_{j} \partial y_{k}} O_{k i} O_{j i}=\sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{j}^{2}}
$$

The conclusion immediately follows, since u satisfies the Laplace equation.
We could have written the same argument in a vector form, by noticing that $D_{x} v=O^{T} D_{y} u$ and $\Delta v=D_{x} v \cdot D_{x} v=\left(O^{T} D_{y} u, O^{T} D_{y} u\right)=\left(D_{y} u, O O^{T} D_{y} u\right)=$ $\left(D_{y} u, D_{y} u\right)=\Delta u=0$.

