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Abstract. Polycrystalline materials undergoing coarsening can be represented as evolving net-
works of grain boundaries, whose statistical characteristics describe macroscopic properties. The
formation of various statistical distributions is extremely complex and is strongly influenced by
topological changes in the network. This work is an attempt to elucidate the role of these changes by
conducting a thorough numerical investigation of one of the simplest types of grain growth simulation
models, the vertex model. While having obvious limitations in terms of its ability to represent real-
istic systems, the vertex model enables full control over topological transitions and retains essential
geometric features of the network. We formulate a self-consistent vertex model and investigate the
role of microscopic parameters on mesoscale network behavior. This study sheds light on several im-
portant questions, such as how statistics are affected by the choice of temporal and spatial resolution
and rules governing topological changes. Statistical analysis of the data produced by the simulation
is performed for both isotropic and anisotropic grain boundary energies.
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1. Introduction. Polycrystalline materials such as metals and ceramics are
composed of single crystallites, called grains, separated by their boundaries, called
grain boundaries. The orientations, shapes, and arrangements of the grains have a
direct relationship to macroscopic materials properties. For example, the presence of
grain boundaries decreases thermal and electrical conductivity that affects the perfor-
mance of chips in microprocessors. Grain boundaries disrupt motion of dislocations
through a material, so reducing crystallite size is a common way to improve strength
and fracture toughness in structures, as described by the Hall–Petch relationship [1].

The grain and grain boundary configuration, or the microstructure of a material, is
determined by a variety of factors, such as history of deformation, phase transitions,
and heat treatment. In this paper, we are primarily interested in the process of
microstructural relaxation known as coarsening. Evolution of the grain boundary
network during coarsening is driven by the tendency of the system to reduce its total
grain boundary surface energy that results in growth of some grains at the expense

∗Received by the editors December 8, 2014; accepted for publication (in revised form) February
19, 2015; published electronically April 14, 2015.

http://www.siam.org/journals/siap/75-2/99923.html
†Department of Mathematical Sciences, George Mason University, Fairfax VA 22015. Current
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of others, as well as in disappearance and nucleation of both small grains and grain
boundaries. In this process the average grain size increases, while the total surface
area of the grain boundaries decreases. As it evolves, the grain boundary network
begins to exhibit stable, self-similar statistical features that can be described by a
finite number of time-dependent parameters. These parameters, in turn, can be used
as continuum descriptors of the network.

One of the principal goals of mathematical modeling of polycrystalline materials is
to understand how the statistics of an evolving grain boundary network depend on the
set of laws that govern the dynamics of the network at the microscopic scale. Here the
laws in question describe the motion of grain boundaries and their junctions, as well as
the criteria for nucleation and disappearance of grains and grain boundaries. Although
these laws have been known for quite some time, their precise role in the development
of macroscopic properties of the network is still not fully clear. A possible way to
establish a connection between the statistical features of the network and the evolution
of individual grain boundaries involves numerical experimentation using large-scale
simulation models. As a starting point, it is therefore desirable to consider models
that are as simple and as computationally inexpensive as possible yet that preserve
the essential characteristics of the original grain boundary network. In what follows
we concentrate on two-dimensional polycrystalline materials that can be thought of
as, e.g., cross sections of systems of columnar grains in aluminum films [2].

Since the motion of grain boundaries is controlled by surface energy, it is normally
modeled within the framework of curvature-driven growth. Under certain assumptions
on relative mobilities of the boundaries and their junctions, it is possible to assume
that the boundaries remain straight during the evolution so that the changes within
the network can be described solely in terms of motion of the junctions, or vertices,
of the graph formed by the boundaries. Note that for isotropic surface energies, only
the junctions between three grain boundaries, as opposed to four or five, for instance,
are stable. Vertex models that discount grain boundary motion in favor of triple
junction motion are used extensively, both due to their computational simplicity in
handling extremely large scale networks and for the purpose of isolating properties
local to triple junctions, for example, triple junction drag. Following the pioneering
works of Fullman [3] in the 1950s and Frost et al. in the 1980s [4], a number of
extensions of the original algorithm have been proposed [5, 6, 7, 8, 9, 10, 11]. The
vertex models have been able to reproduce many characteristic features of the cellular
pattern growth in foams [12, 13] and to some extent in polycrystals [14]. They have
high flexibility, which motivates continued interest in their use despite the existence
of more sophisticated numerical codes. The vertex model approach recently has been
applied to the recrystallization of ferritic stainless steels [15] and, more generally, to
grain growth [14, 16]. It has also been extensively used to validate topological theories
of grain growth and Zener pinning [17, 18]. A comprehensive review of the relevant
literature can be found in the chapter dedicated to vertex models in [19].

In this paper we develop a numerical algorithm for a version of a simple vertex
model originally proposed by Nagai et al. in [5]. Our main aims are to derive the
set of rules for topological transitions within the network that are consistent with
continuous evolution of vertices as well as to control the stability and accuracy of the
code. This is done in order to eliminate numerical issues from the investigation of
the role that various model parameters play in the development of statistical features.
We demonstrate that, although simple, our model results in rich statistics that areD
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764 TORRES ET AL.

reminiscent of what is observed in experiments and more sophisticated simulations.
We emphasize, however, that our main motivation is not to replicate or explain ex-
perimental observations, but to ensure the correct characterization of the complexity
of network behavior. In a subsequent publication we will investigate the formation of
statistics using numerical experimentation with the vertex model developed here. This
investigation will expand on our prior studies of a one-dimensional model [20, 21, 22].

The paper is organized as follows. In section 2, we start by formulating a general
energy-based model of an evolving grain boundary network. We formally demonstrate
that this model reduces to a vertex model by assuming that the mobility of the ver-
tices is much lower than the mobility of grain boundaries evolving via curvature-driven
motion. Next, in sections 3 and 4 we use semirigorous analysis of vertex dynamics to
derive the set of neighbor switching rules as well as estimates of vertex collision times.
Stability analysis of the explicit numerical scheme used in the main algorithm is given
in section 5. The full description of the algorithm appears in section 6, followed by
the numerical results in section 8. We begin this section by testing the numerical
procedure for accuracy and convergence. The procedure is then employed to simu-
late coarsening of grain boundary networks containing a large number of grains. The
geometry of configurations that develop in these simulations is described using the
standard statistical measures for characterizing grain growth. These include distribu-
tions of relative areas of grains, dihedral angle, and number of sides, among others.
We are able to confirm spatiotemporal stability of the distributions that emerge in
a network evolving via our numerical algorithm. We find that the distributions are
essentially independent of the level of numerical resolution as the network appears
to pass through the sequence of similar states, possibly at different rates. While
mesoscopically the model is insensitive to various modifications, including the rules
governing topological changes, the microscopic features of the network tend to differ
with the scenario.

2. Vertex model formalism. Let us define the configuration and establish the
law of evolution for our network. Suppose that a rectangular domain R ⊂ R

2 contains
a set Γ of K > 0 smooth curves Γk := {x = ξk(s), 0 ≤ s ≤ Lk} , k = 1, . . . ,K, that
we will call grain boundaries, with Lk > 0 being the length of the kth boundary. On
a grain boundary curve Γk, one can define an orthogonal frame {bk,nk}, where

bk =
dξk
ds

/

∣∣∣∣dξkds

∣∣∣∣ and nk =
dbk

ds
/

∣∣∣∣dbk

ds

∣∣∣∣ .
Assuming periodic boundary conditions on ∂R, all grain boundaries can terminate
only at junctions with other boundaries. We denote the set of all junctions in R by
X := {xn1

1 ,xn2
2 , . . . ,xnM

M } , where the number of junctions M ∈ N. Here an n-tuple
junction xn

m is a terminal point of n grain boundaries Γj1 , Γj2 , . . . ,Γjn , for some
j1, j2, . . . , jn ∈ {1, . . . ,K}. In the simplest and most commonly studied type of a
grain boundary network, the numbers n1 = n2 = · · · = nM = 3, i.e., all elements of
X are triple junctions.

The grain boundaries contained in Γ subdivide the domain R into N disjoint re-
gions {Σ1, . . . ,ΣN} =: Σ, called grains. With each grain Σl ∈ Σ, l = 1, . . . , N, we as-
sociate an orientation αl ∈ [0, 2π) and the set of grain boundaries ∂Σl = {Γk1 , . . . ,Γkl

}
that enclose Σl. Likewise, for each grain boundary Γk, k = 1, . . . ,K, there are exactly
two grains Σl1(k) and Σl2(k) that are separated by Γk.D
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The grain misorientation parameter Δαk is defined as Δαk := αl2(k) − αl1(k),
where k = 1, . . . ,K. The grain boundary energy, γk, will be assumed to depend only
on misorientation, i.e., γk = γ (Δαk) for every k = 1, . . . ,K and some given function
γ : R → R. The function γ is even and periodic with a period that depends on the
symmetries of crystalline lattices of neighboring grains.

We will assume that the grain boundary network evolves in time via simultaneous
motion of both the grain boundaries and their junctions. In the course of this motion,
some grains grow and some shrink. Once the length of a grain boundary or the
area of a grain decreases to zero, we will say that a component of the network has
disappeared as a result of a topological transition. In order to describe the evolution of
the grain boundary network, both the laws of continuous motion of the boundaries and
junctions as well as the rules governing the topological transitions must be specified.
From now on we will assume that the sets Γ,X, and Σ depend on time t > 0.

We begin the discussion of the network dynamics by considering a period of time
[t0, t0 + T ] during which no topological transitions occur. Introduce the total energy
of the network

E(t) =

K∑
k=1

∫ Lk

0

γ (Δαk) |lk(s, t)|ds, lk =
dξk
ds

,

where all curves at t0 are assumed to be parametrized with respect to their arc length
and Lk is the length of Γk at the time t0. Denoting γk = γ (Δαk), we obtain

d

dt
E(t) =

K∑
k=1

∫ Lk

0

γk
lk
|lk| ·

∂lk
∂t

ds =

K∑
k=1

∫ Lk

0

γkbk · ∂vk

∂s
ds =

K∑
k=1

∫ Lk

0

Tk · ∂vk

∂s
ds,

where Tk = γkbk denotes the capillary force, also called the line tension. Further,
vk(s, t) denotes the velocity of the material point s on the curve Γk at the time t so
that

∂lk
∂t

=
∂

∂t

(
∂ξk
∂s

)
=

∂

∂s

(
∂ξk
∂t

)
=

∂vk

∂s
.

Integrating by parts and using the Frenet formula ∂bk

∂s = κk|lk|nk we obtain

(2.1)
d

dt
E(t) = −

K∑
k=1

∫ Lk

0

κkVk|lk|ds−
M∑

m=1

vm ·
nm∑
l=1

Tm,l,

where Tm,l is the capillary force along the grain boundary Γjl that ends at the triple
junction xnm

m . Further, κk and Vk = vk ·nk are the curvature and the normal velocity
of Γk, respectively.

The simplest framework to enforce energy dissipation is to assume that the grain
boundaries and their junctions follow a version of gradient flow dynamics. Then
the normal velocity of the boundary Γk and the velocity vm := d

dtx
nm
m of the triple

junction xnm
m can be written as

(2.2) Vk = μkκk

and

(2.3) vm = λm

nm∑
l=1

Tm,l,
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766 TORRES ET AL.

respectively. Here μk > 0 is the mobility of Γk and λm > 0 is the mobility of xnm
m .

Then, using (2.1), we have

(2.4)
d

dt
E(t) = −

K∑
k=1

μk

∫ Lk

0

κ2
k|lk|ds−

M∑
m=1

λm

∣∣∣∣∣
nm∑
l=1

Tm,l

∣∣∣∣∣
2

≤ 0.

Equations (2.2) and (2.3) are known as the Mullins equation [23, 24] and a variation
of the Herring condition [25], respectively; cf. also [26].

When the grain boundary mobility is much higher than that of triple junctions,
the grain boundaries Γk are essentially straight lines throughout the evolution. The
precise asymptotic reduction, which we will not treat here, requires boundary layer
analysis near the junctions [27]. Hence the dynamics of the grain boundary network
is completely determined by the motion of the triple junctions via the law (2.3) which
relates the velocity of a triple junction to the sum of capillary forces acting on it. This
reduced model is known as a vertex model in the literature and is a subject of study
in this work.

In what follows, we will set λm = 1 for all m = 1, . . . ,M and, unless noted
otherwise, assume that the grain boundary energy is only weakly anisotropic, i.e.,
γ(Δα) = 1 + εf(Δα), where ε > 0 is small. As we will soon see, this assumption
ensures that all grain boundary junctions are, in fact, triple junctions and nm = 3 for
all m = 1, . . . ,M . Thus we can refer to triple junctions simply as xm, m = 1, . . . ,M ,
by dropping the superscript index nm.

Suppose now that xm1 , xm2 , and xm3 denote three vertices connected to a vertex
xm for everym = 1, . . . ,M . Let γmm1 , γmm2 , and γmm3 be the grain boundary energy
of the straight edges connecting xm with xm1 , xm2 , and xm3 , respectively. Then the
law of the vertex motion (2.3) takes the form

(2.5) ẋm =

3∑
i=1

γmmi

xmi − xm

‖xmi − xm‖ , m = 1, . . . ,M.

In order to fully describe the evolution of the grain boundary network, it is still
necessary to understand what happens during topological transitions that alter the
structure of the network. This is the subject of the next section.

3. Topological transitions. As discussed earlier, a topological transition oc-
curs when an element of a grain boundary network disappears. This can happen when
the length of a single edge or area of a single grain decreases to zero. In this section,
we formulate a set of rules that govern topological transitions. Our approach aims
to improve on existing literature by emphasizing the consistency between continuous
evolution of the network and discrete transitions.

Suppose first that an edge connecting two vertices xi and xj disappears at some
time t0 > 0. We will then say that xi and xj collide at time t0, forming a quadruple
junction. When the grain boundary energy is weakly anisotropic, this junction is
unstable in the following sense: it is possible to split the quadruple junction into two
new triple junctions x̃i and x̃j connected by an infinitesimally short edge that will
grow. Clearly, as indicated in Figure 1, the direction in which the splitting occurs is
not the same as the direction of the original collision. We will refer to this event as a
neighbor switching.D
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Fig. 1. Neighbor switching.

Next, we will use (2.5) to determine the orientation of the edge that forms as a
result of neighbor switching. Fix a sufficiently small Δt > 0; then

ẋi = γii1
xi1 − xi

‖xi1 − xi‖ + γii2
xi2 − xi

‖xi2 − xi‖ + γij
xj − xi

‖xj − xi‖ ,(3.1)

ẋj = γjj1
xj1 − xj

‖xj1 − xj‖ + γjj2
xj2 − xj

‖xj2 − xj‖ + γij
xi − xj

‖xi − xj‖ ,(3.2)

when t ∈ (t0−Δt, t0). Note that the first two terms in both equations are continuous
functions of t on [t0−Δt, t0] if we assume that xi and xj are continuous on [t0−Δt, t0].
Subtracting (3.1) from (3.2) we have

(3.3) (xj − xi)̇ = p−(t)− 2γij
xj − xi

‖xj − xi‖ ,

where

(3.4) p− = γjj1
xj1 − xj

‖xj1 − xj‖ + γjj2
xj2 − xj

‖xj2 − xj‖ − γii1
xi1 − xi

‖xi1 − xi‖ − γii2
xi2 − xi

‖xi2 − xi‖
satisfies p− ∈ C([t0 − Δt, t0]). Let xj − xi = ρn, where ρ = ‖xj − xi‖ and n =
(cos θ, sin θ) and set τ = (− sin θ, cos θ). Rewriting (3.3), we have

(3.5) ρ̇n+ ρθ̇τ = p− − 2γijn,

or by orthogonal decomposition,

ρ̇ = p− · n− 2 γij ,(3.6a)

θ̇ =
p− · τ

ρ
.(3.6b)

In Appendix 1, we use (3.6) to show that

lim
t→t−0

p− · τ = 0,

since limt→t−0
ρ = 0. Thus n− := limt→t−0

n must be parallel to p−(t0). The analogous
arguments on (t0, t0 + Δt) demonstrate that n+ := limt→t+0

n must be parallel to

p+(t0), where

(3.7) p+ = γj̃j1
xj1 − x̃j

‖xj1 − x̃j‖ + γj̃j1
xi1 − x̃j

‖xi1 − x̃j‖ − γĩj2
xj2 − x̃i

‖xj2 − x̃i‖ − γĩi2
xi2 − x̃i

‖xi2 − x̃i‖ ,
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per Figure 1. Note that the edge that had existed before the transition should disap-
pear if the condition

(3.8) ‖p−(t0)‖ − 2γij < 0

is satisfied. Further, an analogue of (3.6a) shows that

(3.9) ‖p+(t0)‖ − 2γĩj̃ > 0

guarantees that the newly formed edge will grow.
Both of these inequalities simultaneously hold for collisions in grain boundary

networks with isotropic grain boundary energy, and we expect them to hold in the
case of weak anisotropy. Indeed, in grain growth simulations described below, we nu-
merically observed that the condition (3.8) is always satisfied, as long as the anisotropy
is not too strong. For large anisotropy quadruple junctions may become stable, as
shown in section 8.6.

4. Collision time estimate. We can use the evolution equations (3.6) to es-
timate whether a pair of the adjacent vertices of the grain boundary network will
collide during a given time step Δt. This estimate is essential to detect topological
transitions within the numerical procedure that will be discussed in the subsequent
sections.

Given the current time t = tc, suppose that the edge connecting the vertices xi

and xj becomes extinct at the time tc+ text, where text < Δt. Assuming that Δt > 0
is sufficiently small and using the continuity of p− on the interval [tc, tc + text], we
have that p−(t) = p−(tc) + o(1). Now consider the system of equations

(4.1a) ˙̄ρ = p · n̄− 2 γij ,

(4.1b) ˙̄θ =
p · τ̄
ρ̄

on [tc, tc + t̄ext] satisfying ρ̄(tc) = ρ(tc) and θ̄(tc) = θ(tc). Here p := p−(tc) and
ρ̄ (t̄ext) = 0. Taking the derivative of (4.1a), multiplying the resulting equation by ρ̄,
and using (4.1) we obtain

ρ̄ ¨̄ρ = ρ̄p · ˙̄n = (p · τ̄ ) ρ̄ ˙̄θ = (p · τ̄ )2 = ‖p‖2 − (p · n̄)2

= ‖p‖2 − ( ˙̄ρ+ 2γij)
2
= ‖p‖2 − ˙̄ρ

2 − 4γij ˙̄ρ− 4γ2
ij .

Rearranging terms then gives

(4.2) (ρ̄ ( ˙̄ρ+ 4 γij)) ˙ = ‖p‖2 − 4 γ2
ij.

Note that this equation no longer involves the angular coordinate θ̄.
Integrating (4.2) once leads to

(4.3) ρ̄ ( ˙̄ρ+ 4 γij) =
(‖p‖2 − 4 γ2

ij

)
(t− tc) + ρ (tc) (ρ̇ (tc) + 4 γij)

on (tc, tc + t̄ext). Suppose that ‖p‖2 − 4 γ2
ij < 0; then the right-hand side of (4.3)

vanishes when t− tc = ρ (tc) (ρ̇ (tc) + 4 γij) /
(
4 γ2

ij − ‖p‖2
)
. We claim that ρ̄ becomes

zero at the same time, i.e.,

t̄ext =
ρ (tc) (ρ̇ (tc) + 4 γij)

4 γ2
ij − ‖p‖2

=
ρ (tc) (p− (tc) · n (tc) + 2 γij)

4 γ2
ij − ‖p‖2

,
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where the final expression follows from the definition of p and (3.6a). Indeed, by our
assumption that ‖p‖2−4 γ2

ij < 0 and from (4.1a), the expression ˙̄ρ+4 γij = p·n̄+2 γij
is strictly positive and bounded on (tc, tc+ t̄ext). It then follows that ρ̄ vanishes along
with the right-hand side of (4.3).

Finally, since p−(t) = p−(tc) + o(1) on [tc, tc + text], we have that t̄ext is the
leading order approximation to text, i.e.,

(4.4) text =
ρ (tc) (p− (tc) · n (tc) + 2 γij)

4 γ2
ij − ‖p− (tc) ‖2 (1 + o(1)) .

5. Stability analysis. Here we present arguments to show that the explicit
numerical scheme proposed in this paper is stable. For simplicity, consider a dis-
cretization of the system (3.6) in the isotropic case when the grain boundary energy
is identically equal to one:

(5.1)

⎧⎨
⎩

ρi+1 = ρi + (p−(ti) · n(ti)− 2)Δt,

θi+1 = θi +
Δt

ρi
p−(ti) · τ (ti).

To simplify this system further, suppose that p−(ti) = p = p(cos θp, sin θp) = const
for all i = 1, 2, 3, . . . and |θ0 − θp| � 1. Then the system (5.1) takes the form

(5.2)

⎧⎨
⎩

ρi+1 = ρi + (p cos(θp − θi)− 2)Δt,

θi+1 = θi +
pΔt

ρi
sin (θp − θi).

Linearization of the system (5.2) in θi around θp gives

(5.3)

⎧⎪⎨
⎪⎩

ρi+1 = ρi + (p− 2)Δt,

θi+1 − θp =

(
1− p

ρi
Δt

)
(θi − θp).

If p < 2, then ρ should vanish after N := �ρ0(2− p)
−1

Δt−1	 time steps. Possible
problems with stability may, therefore, arise when N is large, that is, when p is
close to 2. This situation corresponds to a local equilibrium of the grain boundary
network when all angles between adjacent edges are close to 120◦ in the vicinity of
the disappearing edge. Consider the worst-case scenario when p remains close to 2
for a long time (this is unlikely in real simulations as the motion of other vortices will
likely cause p to change). Suppose that Δt satisfies the condition 0 < pΔt/ρ0 < 1;
then

Δt =
αρ0
p

,

where 0 < α < 1. Substituting this expression into (5.3), the second equation in (5.3)
takes the form

(5.4) θi+1 − θp =

(
1− α

1− i
x

)
(θi − θp) ,

where x = p
α(2−p) . Using the same notation, we have N = �x	. It now follows that

(5.5) θi − θp = (θ0 − θp)

i∏
j=1

(
1− α

1− j
x

)
,
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where i = 1, 2, 3, . . . , �x	−1 since we do not need to determine θ when ρ = 0. Suppose
that p ↑ 2; then x → ∞ and the magnitude of the factors in the product in (5.5) is
close to 1− α when j is small. On the other hand, when j is close to �x	,∣∣∣∣∣1− α

1− j
x

∣∣∣∣∣� 1,

and the value of the product is largest when i = �x	 − 1. Thus there are no issues
with numerical stability if the product

(5.6) Φ(α, x) :=

�x�−1∏
j=1

∣∣∣∣∣1− α

1− j
x

∣∣∣∣∣
remains finite for large x. If Γ(x) is the Γ-function, in Appendix 2 we show that

(5.7)

Φ(α, x) =
1

π

Γ(1 + x− �x	)Γ((1 − α)x)Γ(�x	 − x+ αx)

Γ(x)
sinπ ((1− α)x − �(1− α)x	),

as long as αx > 1. Since max1≤λ≤2 Γ(λ) = 1, we have that

0 ≤ Φ(α, x) ≤ 1

π

Γ((1− α)x)Γ(�x	 − x+ αx)

Γ(x)
,

for all x > 0 as long as αx > 1. Further, if 0 < α < 1 is fixed and x � 1, then the
monotonicity and asymptotics of Γ for large values of its argument imply that

0 ≤ Φ(α, x) ≤ 1

π

Γ((1− α)x)Γ(αx)

Γ(x)
∼
(
αα(1− α)

1−α
)x
→ 0 as x→ 0.

Then θN−1 → 0 as p→ 2 and the numerical scheme is stable.

6. Vertex code algorithm description. The main algorithm can be decom-
posed into two parts: discrete and continuous, describing topological transitions and
motion of triple junctions, respectively. Both of these processes depend on the time
resolution Δt. The discrete component of the algorithm detects and carries out
topological transitions within [t, t+Δt], while the continuous component evolves the
triple junctions from time t to time t + Δt. The procedure is described in detail in
Algorithm 1 below.

The continuous part of the evolution is relatively straightforward and can be
achieved by solving a system of ODEs by means of any available numerical scheme,
e.g., MATLAB ode45 routine. The principal aim of this implementation is to isolate
and fully resolve topological transitions. This is done by dynamically adapting the
time step Δt using the formula (4.4) within the following procedure.

Initially, Δt is set equal to a prescribed value of Δt0. On each time step, the
algorithm estimates extinction times for all grain boundaries and selects only those
which fall in the interval [t, t+Δt]. Then the corresponding grain boundaries are sorted
according to their extinction times. Next we move along this list and record those
boundaries whose vertices have not yet been encountered. This process continues
until either all vertices are exhausted or a boundary with an already recorded vertex
has been detected. In the latter case, the process stops and the time step is adjusted
to only allow extinction of the boundaries that have been recorded. This ensures that
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Algorithm 1. Main algorithm.

1: GRAINS(0,:) ← Initial configuration at time t = 0.
2: Δt0 ← Upper bound for Δt.
3: Δt← Δt0
4: while Stopping Criteria Not Satisfied do
5: text ← Compute extinction times for all grain boundaries.
6: L1 ← Select grain boundaries such that 0 < text < Δt
7: if L1 is empty then
8: GRAINS(t + Δt,:) ← Evolve grain data structure GRAINS(t,:) to time

t+Δt.
9: else

10: L1 ←Sort L1 in increasing order of text
11: tmp← {}, L2 ← {}, l2 ← {}
12: for l ∈ L1 do
13: if triple junctions(l) ∩ tmp = ∅ then
14: L2 ← Add grain boundary l.
15: tmp← Add triple junctions(l).
16: l2 ← l.
17: else

18: Δt← text(l2) + text(l)

2
.

19: Break-loop.
20: end if
21: end for
22: for m ∈ L2 do
23: nl, nr ← Numbers of sides of the grains adjacent to the grain boundary

m.
24: if nl = 3 and nr = 3 then
25: return ERROR
26: else if nr = 3 or nl = 3 then
27: Remove the adjacent 3-sided grain. Replace it with an edge, as

shown in Figure 3
28: else
29: Flip the grain boundary m, as shown in Figure 2.
30: end if
31: GRAINS(t+Δt,m) ← Evolve GRAINS(t,m) to time t+Δt.
32: end for
33: GRAINS(t +Δt,¬L2) ← Evolve GRAINS(t,¬L2) to time t+Δt.
34: Δt← Δt0.
35: end if
36: end while

there is spatial separation between topological transitions. Once the time step has
been adapted, transitions that involve all recorded boundaries are implemented and
the rest of the network is allowed to evolve in a continuous fashion. Then the time
step is reset to the original value of Δt0 and the procedure is repeated until 80% of
the grains have been eliminated.

There are two types of transition events: (1) neighbor switching and (2)
grain removal. From the detection point of view outlined above, these events are
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(a) Step 1: Detect a neigh-
bor switching event.

(b) Step 2: Advance the col-
liding triple junctions i and
j to their positions at time
t+ text.

(c) Step 3: Exchange the
neighbors of colliding triple
junctions i and j.

(d) Step 4: Advance posi-
tions of the triple junctions
i and j from time t+ text to
time t+Δt.

(e) Step 5: Fix positions of
junctions i and j and move
the remaining junctions to
new positions at time t+Δt.

Fig. 2. Neighbor switching algorithm.

Fig. 3. Configurations resulting in grain removal. The location of the new triple junction x̃1(t)
is set to be the collision point for the two triple junctions that collide first.

indistinguishable. On the other hand, the ways in which these events are resolved
are completely different. At first, all detected events are considered to be a neighbor
switching event, as shown in Figure 2. However, when one of the two grains adja-
cent to the disappearing grain boundary has only three sides, we proceed to remove
that grain, as depicted in Figure 3. The neighbor switching is done according to the
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rules discussed in section 3. We assume that the anisotropy is small enough so that
a shrinking grain boundary cannot be simultaneously adjacent to two 3-sided grains,
and the procedure returns an error if this happens.

Note that only 3-sided grains are allowed to be removed. Thus, for a 5-sided grain
to be able to disappear, it needs first to become a 4-sided grain and then a 3-sided
grain. The number of sides of a given grain can change either through a neighbor
switching event or as a consequence of a neighboring grain disappearance. Finally,
when a switching of neighbors is performed, the length of the new grain boundary
is computed to be proportional to Δt − text, where text is the extinction time of the
grain boundary in question.

7. Numerical convergence study. Although a rigorous analytical investiga-
tion is beyond the scope of this paper, in this section we present a numerical study
subjecting the proposed algorithm to several tests for accuracy and convergence.
The first test is designed to check how well the numerical procedure is able to handle
topological transitions via time step adaptation. For this purpose, we compare the
results of several simulations using different values of the maximum time step Δt0
in Figures 4 and 5. Figure 4 shows grain boundary structures obtained from the
same initial configuration with 200 grains at t = 0.45 when approximately 80% of
the grains were removed. Three different simulations with maximum time step sizes
Δt0 = 10−2, 10−5, and 10−6 were performed. It is evident that, with the exception of
the grain structure obtained when Δt0 = 10−2—the coarsest maximum time step—all
grain boundaries lie directly on top of each other. In Figure 5 we plot the dependence
between the simulation time and the size of time step for Δt0 = 10−2 and 10−6. The
figure shows that fewer time step refinements are performed for smaller Δt0 and that
for a very small Δt0, refinements are needed only when a grain removal occurs.

Next we test our algorithm for convergence using the following measures. First
we run a set of simulations corresponding to several Δt0. We consider the simulation
with the smallest Δt0 = 10−6 as “well-resolved” and benchmark the results of other
simulations against it. In Figure 6 we consider the difference between the positions
of triple junctions produced by a given and the well-resolved simulations at the time
t = 0.45. Only the remaining common junctions are considered in this calculation.
It can be seen that the error decreases linearly toward zero as Δt0 → 0. In fact, the
number of noncommon triple junctions remaining at time t decreases to zero as well
and it becomes exactly zero when Δt0 = 10−4 (Figure 7).

These tests allow the conclusion that the proposed algorithm successfully handles
both topological transitions and the grain boundary motion and is numerically stable.

8. Numerical results.

8.1. Statistics. In this section we analyze the statistics for networks with
isotropic and weakly anisotropic grain boundary energy. In all cases the network
is initialized via a Voronoi tessellation using points uniformly distributed in the com-
putational domain and assuming periodic boundary conditions. All networks initially
contained 100,000 grains and were evolved until 80% of the grains were removed.

Figure 8 depicts the relative area distribution using linear and log scales. We
observe that the distribution is skewed toward grains with smaller areas (this is em-
phasized in the log-scale plot). There is a notable difference from statistics produced
by a curvature-driven simulation; in fact, grains with smaller areas tend to have a
smaller rate of area change (Figure 18(a)). As a result, a grain boundary network
evolved via triple junctions motion tends to have more small grains.
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0 0.5 1

0

0.2

0.4

0.6

0.8

1

Fig. 4. Grain boundary networks evolved from the same configuration with 200 grains up to
t = 0.45 when approximately 80% of the grains were removed. The simulations were run with three
different maximum time steps: Δt0 = 10−2 (light gray), 10−5 (dark gray), and 10−6 (black).
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Fig. 5. Evolution of the time step for Δt0 = 10−2 (◦) and Δt0 = 10−7 (+). Larger markers
represent the instances when the decrease in time step was caused by grain removal in the absence
of neighbor switching.
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Fig. 6. Deviation between positions of triple junctions corresponding to grain boundary networks
for various Δt0 compared to a well-resolved simulation with Δt0 = 10−7. All simulations started
from the same initial data and were compared at the same absolute time t = 0.45.
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Fig. 7. Number of noncommon triple junctions between grain boundary networks for various
Δt0 and a well-resolved simulation with Δt0 = 10−6. All simulations started from the same initial
data and were compared at the same absolute time t = 0.45.
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Fig. 8. Relative grain area distribution in the isotropic network consisting of 20,000 grains that
evolved from an initial configuration of 100,000 grains.

The distribution of the number of sides per grain is shown in Figure 9(a) and
demonstrates a bias toward 3-sided grains. We attribute this to the fact that grains
need to go through a cascade of decreasing number of sides before they can be removed,
i.e., a grain needs to become a 3-sided grain before it is allowed to disappear. The
largest proportion of grains are 5-sided. Another important feature is that when the
number of sides exceeds n = 12, the value of the probability density function is very
small compared to the values when n ≤ 12. This is relevant to understanding statistics
presented below because the sample size for large n is small.

The third statistic (Figure 9(b)) is the dihedral angle distribution. This distri-
bution does not seem to be centered at 120◦ but instead shows a small shift toward
angles larger than 120◦.

Finally, we computed the average number of sides of neighbors for grains with
a given number of sides (Figure 10(a)) as well as the reduced average area of the
neighbors (Figure 10(b)). A comparison to the empirical Aboav and Aboav–Weaire
laws [28] is shown in Figure 11 for the systems from which the 20% and 80% of the
grains were removed, respectively. The Aboav–Weaire law appears to provide a better
fit in both cases.
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Fig. 9. Distributions for the (a) number of sides of a grain and (b) dihedral angle. The data
is collected using the isotropic network of 20,000 grains that evolved from an initial configuration
consisting of 100,000 grains.
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Fig. 10. For grains with a given number of sides: (a) average number of sides of neighboring
grains; (b) average relative area of neighboring grains. The data is collected using the isotropic
network of 20,000 grains that evolved from an initial configuration consisting of 100,000 grains.

The distributions obtained for grain boundary networks with weakly anisotropic
grain boundary energy γ(Δα) = 0.95− 0.05 cos3(4Δα) are shown in Figures 12–14.
Note that the statistical features that develop in this case are essentially identical to
those observed when the grain boundary energy is isotropic.

8.2. Self-similarity. We have tested the distributions we have observed for self-
similarity. We found that self-similarity does indeed develop and is very consistent for
all distributions of interest. Here a critical issue is that a sufficiently large number of
grains is needed initially for a clear trend to develop. In our experience, the statistics
do not depend on the details of the initial configuration; these can only affect the time
needed to achieve stable statistics. Here the initial set of grains was generated using
the Voronoi construction for a uniformly distributed random collection of points in a
rectangular domain.D
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Fig. 11. Comparison with Aboav and Aboav–Weaire laws for an isotropic network: (a) 20% of
the grains have been removed; (b) 80% of the grains have been removed.
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Fig. 12. Relative grain area distribution in the anisotropic network consisting of 20,000 grains
that evolved from an initial configuration of 100,000 grains.

Figures 15 and 16 show the development of various distributions over time. The
plots were produced by evolving grain boundary networks that initially contained
100,000 grains up until 20,000 grains remained.

8.3. Comparison of different neighbor switching rules. We have compared
three types of neighbor switching rules used in the literature: maximum dissipation
rate [7], maximum force [10], and the proposed approach. Figure 17 shows a part of the
grain boundary network immediately preceding the first neighbor switching event and
for several time steps afterward. The three rules result in a different initial orientation
of the newly formed grain boundary that has length proportional to Δt− text. In all
cases, subsequent evolution of the network corrects the angle to the one enforced by
the continuous part of the algorithm. Overall, it appears that a “suboptimal” neighbor
switching rule leads to accumulating errors that result in a grain boundary network
that differs significantly from that produced using the “optimal” rule, starting from
the same initial conditions. However, singular behavior of the continuous part of
the dynamical system at the time of the neighbor switch, combined with a smaller
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Fig. 13. Distributions for the (a) number of sides of a grain and (b) dihedral angle. The data
is collected using the anisotropic network of 20,000 grains that evolved from an initial configuration
consisting of 100,000 grains.
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Fig. 14. For grains with a given number of sides: (a) average number of sides of neighboring
grains; (b) average relative area of neighboring grains. The data is collected using the anisotropic
network of 20,000 grains that evolved from an initial configuration consisting of 100,000 grains.

maximum time step Δt0, makes this error less significant, per Figure 17(d). In all
cases, the statistical features of the network seem to be unaffected by the type of the
rule used.

From our simulations, it also appears that the networks evolving via different
neighbor switching rules (or via the same rule, but with a different maximum time
step) move through a very similar sequence of configurations in the state space, albeit
at different times.

8.4. Rate of area change for an N -sided grain. A well-known result for
curvature-driven grain growth is the von Neumann–Mullins (n − 6)-rule. The rule
states that, given constant mobility and constant anisotropy, and assuming that the
network satisfies the Herring condition (angles between the boundaries meeting at a
triple junction are all equal to 120◦ in an isotropic case), we have

dA

dt
= c(n− 6),

D
ow

nl
oa

de
d 

06
/3

0/
15

 to
 1

29
.1

74
.8

8.
70

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL ANALYSIS OF THE VERTEX MODELS 779

1 2 3 4

0

0.01

0.02

0

1

2

Time
Relative area

(a)

−4 −3 −2 −1 0

0

0.01

0.02

0

0.05

0.1

0.15

0.2

Time
log10(Relative area)

(b)

Fig. 15. Evolution in time of the relative grain area distribution. The statistics were collected
for every time step while evolving grain boundary networks that initially contained 100,000 grains
up until 20,000 grains remained.
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Fig. 16. Evolution in time of distributions for the (a) number of sides of a grain and
(b) dihedral angle. The statistics were collected for every time step while evolving grain bound-
ary networks that initially contained 100,000 grains up until 20,000 grains remained.

where c > 0 is a known constant. In a vertex algorithm the n− 6 rule does not hold.
Indeed, in Figure 18(a) we observe that, although the relation for n between 5 and
15 is close to being linear, it is far from that for grains with a smaller number of
sides. The distribution depends on time and has a self-similar shape; however, the
nature of the observed dependence is still an open problem that will be addressed
in a future publication. Figure 18(b) shows that the average area for each class of
grains with a given number of sides grows over time. This same behavior is observed
in curvature codes [7].

8.5. Stability. We have tested for stability distributions that develop for net-
works evolving via our algorithm in both isotropic and anisotropic cases. Here we
only present the results for the isotropic case due to space constraints and because
the conclusions are qualitatively similar.

The test has been performed on a sample with 100,000 grains initially, where the
simulation was run until 50% of grains were removed. We decomposed the resulting
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Time step, time=0.035999

(a)

Time step=3602, time=0.036009

(b)

Time step=3603, time=0.036019

(c)

Time step=3604, time=0.036029

(d)

Fig. 17. Comparison of three neighbor switching rules: Maximum dissipation rate (light gray)
[7], maximum force (gray) [10], and the approach described in this paper (black). After a short period
of time, configurations are essentially indistinguishable when using a small time step.
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Fig. 18. (a) Average rate of change of grain area versus the number of sides of the grain. (b)
Average grain area versus the number of sides of the grain.

sample into 12 spatially smaller subsets of equal area and collected various statistics
for each sample. These were compared to the output of 10 simulations with initially
20,000 grains that were run until only 4,000 were left. The statistics were computed
for these smaller samples. We also analyzed the statistics for a single 50,000 sample.
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(a) linear scale.
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Fig. 19. Stability of the relative grain area distribution. The average of distributions for 12
subsets of the same simulation, the average of distributions for 10 different simulations, and the
distribution for one large simulation are shown. The deviation of distributions from their average
for each group is indicated by error bars.
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Fig. 20. Stability of distributions for the (a) number of sides of a grain and (b) dihedral angle.
The average of distributions for 12 subsets of the same simulation, the average of distributions for
10 different simulations, and the distribution for one large simulation are shown. The deviation of
distributions from their average for each group is indicated by error bars.

Figures 19 through 21 present the outcome of this study. This experiment shows
numerical evidence that all distributions are remarkably stable in the sense that col-
lecting statistics over subareas of the network or the entire network produces the same
results.

8.6. Quadruple junctions and their stability. In a network with a large
anisotropy stable quadruple junctions may exist. From the implementation point
of view, they are two triple junctions that almost overlap. In principle, one needs
to develop a separate set of rules that govern neighbor switching for this type of a
junction. In our algorithm, quadruple junctions are always assumed to split into triple
junctions. However, if a quadruple junction is stable, then any new boundary created
as a result of the split would shrink and disappear, restoring the original quadruple
junction. In this way, the code is capable of dealing with stable quadruple junctions.
The example of such junction in a grain boundary network with an anisotropic grain
boundary energy γ(Δα) = 0.55− 0.45 cos3(4Δα) is shown in Figure 22.
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Fig. 21. For the grains with a given number of sides: (a) average number of sides of neighbors;
(b) average relative grain area of neighbors. The average of distributions for 12 subsets of the same
simulation, the average of distributions for 10 different simulations, and the distribution for one
large simulation are shown. The deviation of distributions from their average for each group is
indicated by error bars.
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Fig. 22. Evolution of two triple junctions that remain together and emulate a quadruple junc-
tion. Darker colors correspond to larger grain boundary energy.
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9. Conclusions. We have developed a numerical algorithm for an evolving grain
boundary network described by a simple vertex model. The model can be formally
derived via the assumption that the mobility of triple junctions is much lower than
the mobility of grain boundaries evolving via curvature-driven motion. We have used
a semirigorous analysis of vertex dynamics to derive the neighbor switching rules
consistent with continuous evolution of vertices as well as the estimates of vertex
collision times. These estimates were incorporated into the numerical procedure to
pinpoint the times corresponding to topological transitions. By simulating coarsening
of the vertex model grain boundary network, we have demonstrated that the geometry
of configurations that develop is described by the standard statistical measures for
characterizing grain growth. These include distributions of relative areas of grains,
dihedral angle, and number of sides, among others. We have confirmed spatiotemporal
stability of the distributions that develop in a network evolving via our numerical
algorithm. We find that the distributions are essentially independent of the level
of numerical resolution as the network passes through the sequence of similar states.
While mesoscopic characteristics of the network appear to be robust, even with respect
to changes in the rules governing topological transitions, the microscopic features of
the network at a given time are sensitive to any modifications of the algorithm.

Appendix 1. Suppose that the edge connecting two vertices xi and xj disappears
at the time t0 and that p−, ρ, θ, n, and τ are as defined in section 3. Here we will
use (3.6) to argue that, as long as p− ∈ C([t0 −Δt, t0]) for some small Δt > 0 and

‖p−(t0)‖ − 2γij < 0,

we have that

(9.1) lim
t→t−0

p− · τ = 0.

First, since p− ∈ C([t0 − Δt, t0]) and ‖p−(t0)‖ − 2γij < 0, we can choose Δt
small enough so that −4γij ≤ p− · n − 2 γij ≤ −α on [t0 − Δt, t0] for some α > 0.
The system (3.6) has a continuous solution on [t0−Δt, t0), where the function ρ is, in
fact, continuous on [t0−Δt, t0]. Integrating (3.6a) and using the condition ρ(t0) = 0,
we obtain

(9.2) α(t0 − t) ≤ ρ(t) ≤ 4γij(t0 − t),

when t ∈ [t0 −Δt, t0].
Set p− = ‖p−‖(cos θp, sin θp); then (3.6b) takes the form

(9.3) θ̇ =
‖p−‖
ρ

sin (θp − θ).

We will assume here that p− �= 0 on [t0−Δt, t0]; then both ‖p−‖ and θp are continuous
and ‖p−(t)‖ > β for all t ∈ [t0 −Δt, t0] and some constant β > 0.

Suppose first that 0 ≤ θp− θ ≤ π on [t0−Δt, t0). Then θ̇ ≥ 0 on t ∈ [t0−Δt, t0),
hence limt→t−0

θ exists. If this limit is finite, it immediately follows from integrability

of the right-hand side of (9.3) and (9.2) that the limt→t−0
θ = θp(t0). If the limt→t−0

θ =

∞, then the assumption that θp − θ > 0 implies that limt→t−0
θp = ∞; this violates

the continuity of θp on [t0 −Δt, t0]. An analogous argument can be used to show a
symmetric result for −π ≤ θp − θ ≤ 0.
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It remains to prove (9.1) when there exists a sequence tn → t0 such that tn < tn+1

and sin (θp(tn)− θ(tn)) = 0 for all n = 1, 2, 3, . . .. Since θp is continuous on [t0−Δt, t0],
we can assume that

(9.4) |θp(tn)− θp(t0)| < π/2

for all n = 1, 2, 3, . . . . Fix an arbitrary n = 1, 2, 3, . . .; then sin (θp(tn)− θ(tn)) = 0
and sin (θp(tn+1)− θ(tn+1)) = 0. Assume that θp(tn) = θ(tn) and 0 < θp(t)−θ(t) < π

on the interval (tn, tn+1). Then (9.3) guarantees that θ̇ > 0 on (tn, tn+1) and thus
θ is increasing on (tn, tn+1). Further, we have that either θp(tn+1) = θ(tn+1) or
θp(tn+1) = θ(tn+1) + π. But since θ is increasing on the interval (tn, tn+1), the
inequality (9.4) implies that

0 ≤ θp(tn+1)− θ(tn+1) = θp(tn+1)− θp(tn)+ θ(tn)− θ(tn+1) < θp(tn+1)− θp(tn) ≤ π

2
,

and therefore θp(tn+1) = θ(tn+1). The same conclusion holds if we assume that
−π < θp(t)−θ(t) < 0 on the interval (tn, tn+1), except that in this case θ is monotone
decreasing on (tn, tn+1). It follows by an induction argument that θ and θp have the
same values at tn and θ is monotone on (tn, tn+1) for every n = 1, 2, 3, . . .. The fact
that limt→t−0

θ = θp(t0) is then a simple consequence of continuity of θp on [t0−Δt, t0].

This, in particular, implies (9.1).

Appendix 2. Here we derive (5.7), that is, given

(9.5) Φ(α, x) =

�x�−1∏
j=1

∣∣∣∣∣1− α

1− j
x

∣∣∣∣∣ =
�x�−1∏
j=1

∣∣∣∣x− j − αx

x− j

∣∣∣∣ ,
where x is large and 0 < α < 1, we show that

(9.6)

Φ(α, x) =
1

π

Γ(1 + x− �x	)Γ((1 − α)x)Γ(�x	 − x+ αx)

Γ(x)
sinπ ((1− α)x − �(1− α)x	).

First, given λ > 0, the relationship

(9.7)
Γ(m+ λ+ 1)

Γ(l + λ)
=

m∏
i=l

(i + λ)

holds for any l,m ∈ N. By changing the index, j → �x	 − j, we have that

Φ(α, x) =

�x�−1∏
j=1

∣∣∣∣x− �x	 − αx + j

x− �x	+ j

∣∣∣∣
=

∏�x�−�(1−α)x�−1
j=1 (x− �x	 − αx+ j)

∏�x�−1
j=�x�−�(1−α)x� (x− �x	 − αx+ j)∏�x�−1

j=1 (x− �x	+ j)

=
Φ1(α, x)Φ2(α, x)

Φ3(α, x)
.

(9.8)

We consider Φ1, Φ2, and Φ3 separately. Using (9.7), we immediately obtain

Φ3(α, x) =

�x�−1∏
j=1

(x− �x	+ j) =
Γ(x)

Γ(1 + x− �x	) .
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By changing the index j → j − �x	+ �(1 − α)x	, we find

Φ1(α, x) =

�(1−α)x�−1∏
j=0

((1− α)x − �(1− α)x	+ j) =
Γ((1 − α)x)

Γ((1 − α)x− �(1 − α)x	) ,

and by changing the index j → �x	 − �(1 − α)x	 − 1− j, we determine that

Φ2(α, x) =

�x�−	(1−α)x
−1∏
j=0

(�(1− α)x� − (1− α)x + j) =
Γ(�x	 − x+ αx)

Γ(�(1− α)x� − (1 − α)x)
.

It follows by the properties of the Γ-function that

Φ1(α, x)Φ2(α, x) =
Γ((1 − α)x)Γ(�x	 − x+ αx)

Γ((1− α)x − �(1− α)x	)Γ(�(1 − α)x� − (1 − α)x)

=
Γ((1− α)x)Γ(�x	 − x+ αx)

Γ((1 − α)x− �(1− α)x	)Γ(1 − ((1 − α)x− �(1− α)x	))
=

1

π
Γ((1− α)x)Γ(�x	 − x+ αx) sin π ((1 − α)x− �(1 − α)x	).

Dividing this expression by Φ3, we recover (9.5).
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