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CONTINUOUS TIME RANDOM WALK BASED THEORY FOR A

ONE-DIMENSIONAL COARSENING MODEL

DIEGO TORREJON, MARIA EMELIANENKO AND DMITRY GOLOVATY

Abstract. In this work we propose a master equation describing evolution of the veloc-

ity statistics in a one-dimensional coarsening model motivated by the studies of polycrys-
talline materials. The model postulates the dynamics of a large number of intervals—

referred to as domains—on the real line. The length of the intervals changes during

evolution and the intervals are removed from the system once their length reaches zero.
The coarsening process observed in this model exhibits a number of interesting features,

such as nonhomogeneous inter-arrival times between reconfiguration events and develop-

ment of spatiotemporally self-similar distributions.
We generalize the standard continuous time random walk (CTRW) theory to include

time-dependent jumps and subject it to time-dependent temporal rescaling to obtain

an accurate non-homogeneous Poisson description of the coarsening process in the one-
dimensional model. The theory leads to the evolution equation having self-similar solu-

tions observed in simulations.
The new framework allows to accurately estimate coarsening rates and characterize

resulting steady-state distribution for the domain energies described by a power law of a

uniformly distributed quantity. Although derived here in the context of a one-dimensional
systems, this work naturally extends to higher dimensional CTRW coarsening models.

1. Introduction

Coarsening models are used to describe dynamics of physical systems consisting of multi-
ple domains, where some regions grow at the expense of others. The average size of domains
grows over time, hence the network experiences “coarsening”. While this process is very
complex in three dimensions, lower-dimensional models often offer advantages in elucidating
certain features of dynamics and are extremely instrumental at the early stages of theory
development. Smoluchowski’s coagulation [1], Mullins model [2, 3] and curvature-driven
model by Lazar et al [4, 5] are only some of the one-dimensional examples that can be found
in literature. Here we focus our attention on a one-dimensional model originally introduced
in [6], which is different from those in [1]-[5] in that it is aimed at capturing topological
changes in the evolving grain boundary network compared to the curvature-driven effects.
This choice is motivated by the widely accepted fact that topological reconfigurations play
a critical role during texture development in polycrystals.

Scaling theories characterize scaling laws of self-similar behavior of statistical distributions
harvested from simulations or experiments. The procedure normally amounts to postulating
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suitable scaling hypothesis (ansatz) and deriving corresponding scaling exponents describing
the self-similar form for the quantities of interest. Our goal is to carry out this task in
the context of a one-dimensional model, which we do by means of interrogating the large-
scale coarsening simulation for a variety of initial conditions and parameter choices. Having
evidence of self-similar behavior, we invoke the probabilistic description of the velocity jump
process first introduced in [6], which allows us to recover the scaling exponents. What
emerges as a result of this work is a coherent theory in a form of a generalized master
equation capturing self-similar features of the system evolution.

An attempt to develop such theory in the context of materials applications dates back to
Mullins [7, 8] and has been a focus of many recent investigations [9]-[15]. Relatively speak-
ing, starting from a discrete model, the continuous time random walk (CTRW) approach
presented herein attempts to avoid any physical assumptions and is grounded in purely
statistical and probabilistic analysis of numerical observations.

CTRW theory has found applications in many areas of science and technology. In partic-
ular, it is widely used in financial applications such as in insurance risk theory, in Gibrat’s
model for growth and inequality, and in pricing financial markets [16]-[19]. In biology, it
is applied to derive aggregation models [20, 21]. In physics, CTRWs are useful in model-
ing transport in fusion plasmas [22], in reaction-diffusion models [23]-[25], and in processes
involving anomalous diffusion [26]-[31].

In the standard CTRW formalism, a random walker inter-arrival times and jump sizes
are drawn from a certain transition probability density [18, 20, 27]. In [23, 25], Angstman
et al. derive a generalized CTRW master equation on a lattice with non-stationary jump
sizes and space dependent inter-arrival times for a single particle and for an ensemble of
particles undergoing reactions whilst being subject to an external force field. In [32], a
CTRW master equation on a lattice is derived for the delayed forcing and instanteneous
forcing under a biased nearest-neighbor jumps assumption. In [22], Milligen et al derive a
generalized CTRW master equation with space- and time dependence on the jump sizes and
space dependence on the inter-arrival times.

Our derivation of the generalized master equation happens to fall under the typical sce-
nario in which the transition probability is separable [20, 23, 27, 33], but we are faced with
the challenge of having non-homogeneous inter-arrival times and time-dependent jump sizes.
We use appropriate time-dependent scalings to deal with both of these complications. While
the exact form of these laws differs from one system to another, the overall framework re-
mains the same as long as one can accurately compute the jump sizes and inter-arrival times
statistics from a given simulation.

The paper is organized as follows. In Section 2 we generalize the standard CTRW theory
to the case of time-dependent jump sizes and derive the corresponding master equation.
In Section 3 we show that our coarsening model falls precisely under the class of CTRW
processes treated in Section 2. This allows us to derive the exact expressions for the self-
similar solutions in Section 4. We implement the resulting steady state equation numerically
and show agreement with simulation.

1.1. Simulation description. In this section we define and analyze the properties of a
simple coarsening network - a system of domains represented by intervals on the circle, as
introduced in [6] and analyzed in a series of works [34, 35]. Following the same set-up, we
assume that each domain is described by its length and a scalar “energy density” parameter.
Only nearest neighbor interactions between the domains are considered, with the strength
of the interactions dependent on the energy densities of the neighboring domains.
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To fix ideas, for a given L > 0 consider a circle of circumference L or, equivalently, an
interval [0, L] ⊂ R with periodic boundary conditions. Randomly select n points {xi}ni=1 ⊂
[0, L] with xi ≤ xi+1 for i = 1, . . . , n − 1 and the point xn+1 identified with the point x1.
Given the periodicity assumption, the interval [0, L] is thus subdivided into n sub-intervals
[xi, xi+1], i = 1, . . . , n of lengths li = xi+1 − xi, i = 1, . . . , n − 1 and ln = L + x1 − xn,
respectively. Note that the locations and the number of points will vary during evolution,
however the total length L of all intervals remains fixed. Further, if a partition point leaves
[0, L] through x = 0, it immediately re-enters [0, L] at x = L and vice versa.

xi−2 xi−1 xi xi+1 xi+2li−2 li−1 li li+1

φi−2 φi−1 φi φi+1

Figure 1. Set-up of the one dimensional coarsening model where {xi}ni=1,
{li}ni=1, {φi}ni=1 denote domain boundaries, domain lengths, and energy
densities, respectively.

For each interval [xi, xi+1], i = 1, . . . , n, we select a random number φi ∈ R as seen in
Figure 1. Here the interval [xi, xi+1] for i = 1, . . . , n can be thought of as a “domain” and
the points xi, xi+1 as the domain boundaries (DBs).

We define the total energy of the one-dimensional system by

(1.1) E(t) =

n∑
i=1

φi [xi+1(t)− xi(t)]

and consider the gradient flow dynamics given by the system of ordinary differential equa-
tions

(1.2) ẋi = φi − φi−1, i = 2, . . . , n, and ẋ1 = φ1 − φn.

In what follows, we consider a non-negative energy density of the form

(1.3) φi = φ(αi) = |αi|γ , γ > 0.

Here the parameter αi, initially chosen for each domain according to the uniform random
distribution in the interval (−π/4, π/4), does not change during the lifetime of the corre-
sponding domain.

The rate of change of the domain length—referred to as a velocity of a domain i =
1, . . . , n—can be computed from the relation

(1.4) vi = ẋi+1 − ẋi = φ(αi+1) + φ(αi−1)− 2φ(αi).

The set of domain velocities changes only at the times of collisions between adjacent DBs
eliminating the domains between these boundaries; we call each event of this type a disap-
pearance event. The velocity corresponding to the collapsed domain is then removed from the
list of domain velocities while the velocities of its neighbors are adjusted appropriately. Note
that the lengths of the individual domains vary linearly in time between the disappearance
events and depend entirely on the respective domain velocities.

An important feature of the thermodynamics of coarsening in materials is that it is
energy dissipative. The reduced gradient flow model (1.2) is specifically designed to enforce
dissipation, as verified in [6].



186 DIEGO TORREJON, MARIA EMELIANENKO AND DMITRY GOLOVATY

1.2. Stabilization of statistics. In this section we describe the results of numerical sim-
ulations of a system containing a large number of domains. The simulations reveal the set
of coarse-grained characteristics of the system that develop over time which we will use in
subsequent sections to establish an appropriate statistical model.

First, we find that there is a transient relaxation stage that occurs early in the simula-
tion, when energetically unfavorable domains are quickly eliminated from the system. After
the relaxation stage, we observe stabilization of the respective statistics of relative domain
lengths, DB velocities, domain velocities, and energy densities. The duration of the relax-
ation stage varies depending on the value of γ. As γ decreases, as seen in Figure 2, we
observe that the steady-state distribution of the relative energy density is farther from the
initial distribution. Hence, it takes longer for the distribution to stabilize for lower values
of γ. Note that the initial distribution of the energy density, in Figure 2, has a jump due to
the fact that α is chosen in the interval (−π/4, π/4).

Figure 2. Relative energy density distribution at various stages of evolu-
tion as indicated by the percentage of domains eliminated from the system.
Top left: γ = 0.5. Top right: γ = 1. Bottom left: γ = 1.5. Bottom right:
γ = 2.

Following the analysis done in [6], we reproduce the inter-arrival times and jump sizes
statistics, as seen in Figure 3. While the inter-arrival times plots are clearly of exponential
type with growing means (cf. [6]), the distributions of jump sizes behave in a less intuitive
manner, prompting a further investigation.

The feature of primary interest in the present study is the development of the self-similar
regime in this coarsening model, as alluded to in the introduction. Indeed, with a suitable
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Figure 3. Inter-arrival times and jump sizes for γ = 2 at various stages
of evolution as indicated by the percentage of domains eliminated from the
system. Left: Semi-log plot of inter-arrival times. Right: Evolution of jump
sizes.

choice of spatiotemporal scaling laws resulting distributions of velocities and energies exhibit
self-similarity. We give numerical evidence of this fact in Section 4, in Figures 9 and 10.
Based on the stochastic properties of the appropriate random variables that we deduce
from numerical experiments, we develop a modification of the continuous time random walk
(CTRW) theory. This theory leads to an integral-differential equation that accurately models
the evolution of the one-dimensional system of domains in the self-similar regime. Above all,
it gives a formal characterization for the stochastic processes driving coarsening dynamics,
as we are about to describe in the sections that follow.

2. Generalization of CTRW theory

2.1. Homogeneous master equation. The concept of CTRW theory became popular
half a century ago as a rather general microscopic model for diffusion processes. Unlike
discrete time random walks, in the CTRW the number of jumps made by a walker during a
time interval is a stochastic—often a homogeneous Poisson—process. The continuous time
random walk was first introduced by Montroll and Weiss [36], Montroll and Scher [37], and
later on by Klafter and Silbey [38].

In the standard CTRW setting, both the inter-arrival times and the jump sizes are as-
sumed to be independent and identically distributed. Another typical assumption is that the
jump size are statistically independent of the inter-arrival times; the corresponding process
is referred to as a decoupled CTRW.

We begin this section with a generalization of the CTRW framework obtained by dropping
the assumption of identically distributed jump sizes. The CTRW model is based on the idea
that the jump size and inter-arrival time are drawn from a joint p.d.f. θ̃ which will be referred
to as the transition probability density function. Hence the transition probability of taking a
jump from velocity v0 at time τ0 to velocity v at time τ is represented by θ̃(v−v0, τ − τ0, τ).
We assume that the transition p.d.f. is separable

θ̃(v − v0, τ − τ0, τ) = µ̃(v − v0, τ)w̃(τ − τ0) = µ̃(∆v, τ)w̃(s),(2.1)
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with s = τ − τ0 and ∆v = v − v0. Here∫
R
µ̃(∆v, τ) d(∆v) = 1 for all τ > 0 and

∫ ∞
0

w̃(s) ds = 1.

We also introduce the function

ψ̃(τ) = 1−
∫ τ

0

w̃(s) ds

that evaluates the probability that a walker remains at a given position at least for the time
period τ .

Let p̃(v, τ) be the probability density function such that p̃(v, τ) dv gives the probability
that the position of a walker lies inside the interval (v, v + dv) at time τ . We have the
following lemma.

Lemma 1. The probability distribution function p̃(·, τ) satisfies the master equation

p̃(v, τ) = ψ̃(τ)F (v) +

∫ τ

0

∫
R
w̃(τ − τ ′)µ̃(∆v, τ ′)p̃(v −∆v, τ ′)d(∆v)dτ ′(2.2)

for all v ∈ R and τ > 0, where F (·) is the initial configuration of walkers.

Proof. We first state an evolution equation for the occupancy density function P (v, τ |0)
defined so that P (v, τ |0)dv is the probability that the position of a walker (who was at the
origin at time τ = 0) lies in the interval (v, v + dv) at time τ . The occupancy density
P (v, τ |0) satisfies the following renewal equation

P (v, τ |0) = ψ̃(τ)δ(v) +

∫ τ

0

∫
R
w̃(τ − τ ′)µ̃(∆v, τ ′)P (v −∆v, τ ′|0)d(∆v)dτ ′.(2.3)

Intuitively, the first term accounts for the walker who fails to move from the starting position
at v = 0 at least until time τ . The integral expresses the fact that a walker found at the
position v at time τ arrived to v after making his last jump from v −∆v where he was at
time τ ′. If instead the walker starts at v0 6= 0, i.e., P (v, 0|v0) = δ(v−v0), then (2.3) changes
to

P (v, τ |v0) = ψ̃(τ)δ(v − v0) +

∫ τ

0

∫
R
w̃(τ − τ ′)µ̃(∆v, τ ′)P (v −∆v, τ ′|v0)d(∆v)dτ ′.(2.4)

If the initial state of the walker is given by an initial probability density distribution p̃(v, 0) =
F (v), then

p̃(v, τ) =

∫
R
P (v, τ |v0)F (v0)dv0.

Hence p̃(v, τ) satisfies the master equation

p̃(v, τ) = ψ̃(τ)F (v) +

∫ τ

0

∫
R
w̃(τ − τ ′)µ̃(∆v, τ ′)p̃(v −∆v, τ ′)d(∆v)dτ ′,

as follows from (2.4). �

Lemma 2. Let the waiting times in Lemma 1 be exponentially distributed according to

w̃(τ) = λ̃e−λ̃τ . Then

∂

∂τ
p̃(v, τ) = λ̄

∫
R
µ̃(∆v, τ)[p̃(v −∆v, τ)− p̃(v, τ)]d(∆v).(2.5)
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Proof. It is convenient to work with equation (2.2) in Laplace space with respect to time.

We denote the Laplace variable as u and the Laplace transform of any function f̃(τ) by

f̂(u). Taking the Laplace transform of (2.2),

Lτ [p̃(v, τ)](u) = Lτ [ψ̃(τ)F (v)](u) + Lτ
[∫

R

∫ τ

0

w̃(τ − τ ′)µ̃(∆v, τ ′)p̃(v −∆v, τ ′)dτ ′d(∆v)

]
(u)

= F (v)
1− ŵ(u)

u
+ ŵ(u)Lτ

[∫
R
µ̃(∆v, τ)p̃(v −∆v, τ)d(∆v)

]
(u).(2.6)

After some algebra manipulation of (2.6),

Φ̂(u)(up̂(v, u)− F (v)) + p̂(v, u) = Lτ
[∫

R
µ̃(∆v, τ)p̃(v −∆v, τ)d(∆v)

]
(u)(2.7)

where

Φ̂(u) =
1− ŵ(u)

uŵ(u)
.

Taking the inverse Laplace transform of (2.7),∫ ∞
0

Φ(τ − τ ′) ∂
∂τ
p̃(v, τ ′)dτ ′ + p̃(v, τ) =

∫
R
µ̃(∆v, τ)p̃(v −∆v, τ)d(∆v).(2.8)

Φ(τ) denotes the memory function of the continuous time random walk [17]. Equation
(2.8) reduces to a differential equation if the process is Markovian, i.e., the waiting time is

exponentially distributed with rate function λ̃. Then

w̃(τ) = λ̃e−λ̃τ ⇒ ŵ(u) =
λ̃

u+ λ̃
⇒ Φ̂(u) =

1

λ̃
⇒ Φ(τ) =

1

λ̃
δ(τ).

Under these assumptions, (2.8) derives

∂

∂τ
p̃(v, τ) = λ̃

∫
R
µ̃(∆v, τ)[p̃(v −∆v, τ)− p̃(v, τ)]d(∆v).

�

Remark 1. Denote ñt as the counting process of jumps by a walker. Assumming expo-
nentially and identically distributed inter-arrival times implies that ñt is a homogeneous
Poisson process with the arrival rate λ̃.

Remark 2. Equation (2.5) can also be obtained by differentiating (2.2) and simplifying the
resulting expression.

2.2. Nonhomogeneous master equation. The following theorem based on [39] relates
the homogeneous Poisson process with the nonhomogeneous Poisson process,

Theorem 1. If {ñτ , τ ≥ 0} is a homogeneous Poisson process with rate λ̃ = 1, then

{nt = ñm(t), t ≥ 0 with m(t) =
∫ t
0
λ(s)ds} is a nonhomogeneous Poisson process with rate

λ(t).

As a simple consequence of Theorem 1 and Lemma 2, we get the following analog of (2.5).

Corollary 1. The probability distribution function p(·, t) = p̃(·,m(t)) satisfies the master
equation

∂

∂t
p(v, t) = λ(t)

∫
R

[p(v −∆v, t)− p(v, t)]µ(∆v, t)d(∆v),(2.9)
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for all v ∈ R and t > 0 with µ(∆v, t) = µ̃(∆v,m(t)), and λ(t) being the arrival rate of the
nonhomogeneous Poisson process nt.

Proof. Denote by ñτ the homogeneous Poisson process with arrival rate λ̃. Without loss of
generality assume λ̃ = 1; otherwise include λ̃ as a factor in λ(t). We apply Theorem 1 with

τ = m(t) where m(t) =
∫ t
0
λ(s)ds. Then nt = ñτ(t) is a nonhomogeneous Poisson process

with rate λ(t). We have that (2.5) holds with the rate λ̃ = 1, that is

∂

∂τ
p̃(v, τ) =

∫
R

[p̃(v −∆v, τ)− p̃(v, τ)]µ̃(∆v, τ)d(∆v).

In terms of the time variable t this equation takes the form (2.9).
�

3. Coarsening model as a CTRW

3.1. Ensemble statistics vs. individual statistics. In this section, we apply the theory
developed in Section 2 to our one-dimensional coarsening model. Considering each DB
velocity as a walker, we can denote by nt the stochastic process counting the number of
jumps experienced by this walker up to time t. The rate associated with this process will be
denoted by λ(t). LetMt be the stochastic process describing the evolution of velocity jump
sizes with probability density function µ(∆v, t) and Vt be the stochastic process describing
the evolution of velocities with probability density function p(v, t). Here v and ∆v denote
DB velocity and DB velocity jump size, respectively. In what follows, we demonstrate the
stochastic processes Mt, Vt, and nt satisfy the assumptions that lead to (2.9). Hence, we
expect p, µ, and λ to be connected via (2.9).

Experimentally, we observe a collection of domains at any given time, so any statistics
that we collect is the statistics for the entire collection. In order to recover the quantities
for a single walker, we therefore need to relate the statistical properties of a collection to the
statistical properties of an individual walker. Numerical experiments given in [6] indicate
that the coarsening model dynamics is ergodic and the DB velocities are i.i.d. at any given
time. We conclude that the DB velocity distribution in the system of many boundaries is
described by the same equation (2.9) as that for a single boundary.

In order to recover the arrival rate for a walker corresponding to velocity jumps of a single
DB, consider the stochastic process Nt counting the number of domains at time t. Then,
as it is shown in Theorem 3 in the Appendix, the arrival rate λN (t) is related to the arrival
rate of a single walker by

λN (t) = 2N(t)λ(t),

where N(t) is the number of domains at time t and the factor of 2 comes from the fact that
each disappearance event corresponds to two DB velocity jumps.

3.2. Separability. We validate the assumption that the joint distribution of non-homogeneous
inter-arrival times and velocity jump sizes is separable, i.e., θ(∆v, s, t) = w(s, t)µ(∆v, t) for
any t > 0. We start by checking the correlation of jump sizes and the inter-arrival times
at different stages of the coarsening simulation. In Figure 4, we plot the p-values and the
correlation coefficients corresponding to the test of no correlation between jump sizes and
interarrival times. Since the majority of p-values are greater than 0.05 and the correlation
coefficients are small, there is no evidence of correlation in the data.

In order to conclusively show independence between the jump sizes and the inter-arrival
times, in Figure 5, we provide a scatter plot for two-dimensional data at the different stages
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Figure 4. Left: p-values for the null hypothesis of no correlation between
jump sizes and inter-arrival times at different stages of the simulation for
γ = 2. p-values below black line denote significant values. Right: Cor-
relation coefficients between jump sizes and inter-arrival times at different
stages of the simulation.

of simulation. In addition, in Figure 6, we show that the joint distribution of jump sizes
and inter-arrival times is essentially equal to the product of the corresponding marginals.
Although not presented here, the separability hypothesis was also validated for other values
of γ.

Figure 5. A scatter plot of the inter-arrival times against jump sizes at
20%(top left), 40%(top right), 60%(bottom left), and 80%(bottom right) of
the simulation for γ = 2.

3.3. Nonhomogeneous Poisson process validation. First we show that the counting
process Nt constitutes a nonhomogeneous Poisson process. According to Definition 2, Nt is
a nonhomogeneous Poisson process if the following two conditions hold:

(a) given a countable, disjoint collection {Ij} of measurable subsets of R+, then {NIj}
is a collection of independent random variables.
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Figure 6. Left: Joint distribution of the jump sizes and inter-arrival times.
Middle: Product of the jump size marginal and the inter-arrival time mar-
ginal. Right: Absolute error between the joint distribution and the product
of marginals. All the statistics were computed at 40% of the simulation for
γ = 2.

(b) if I ⊂ R+ is measurable, then NI has a Poisson distribution with arrival rate∫
I
λN (s)ds.

In order to test that Nt (or, equivalently, N0−Nt) is a nonhomogeneous Poisson process,
we partition the time interval of the simulation into sub-intervals {Ij}. As evident from
Figure 7, the distribution of N0 −Nt on {Ij} resembles the Poisson distribution. The inde-
pendence condition is validated in Figure 8. Although not presented here, both hypotheses
were also validated for other values of γ.

Figure 7. Comparing the distribution of N0 − NIj with the Poisson
distribution for γ = 2. Left: At 30% of the simulation. Middle: At 50% of
the simulation. Right: At 80% of the simulation.

4. Self-similarity of solutions

4.1. Scaling laws. In this section, we show that following the relaxation stage, the processes
Mt and Vt become self-similar.

Definition 1. Let the process St be a stochastic process with probability density function
s(x, t). Suppose there exists t∗ ≥ 0, representing the end of the relaxation stage, such that

∀t ≥ t∗ ∃b > 0 : {St}
d
= {bSt∗} ⇔ ∀t ≥ t∗ ∃b > 0 : s(x, t) =

1

b
s
(x
b
, t∗
)
.

Then we say that St is self-similar.
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Figure 8. Validating the independence condition for N0 −Nt for γ = 2.
Left: Correlation values between N0 − NIi and N0 − NIj for i and j at
different stages of the simulation. The colorbar denotes the magnitude of the
correlation. Right: p-values for the null hypothesis of no correlation between
N0 −NIi and N0 −NIj for i and j at different stages of the simulation. In
the gray area, there is no statistical evidence of correlation.

As seen in Figures 9 and 10, processes Vt and Mt indeed become self-similar, i.e.,

p(v, t) = b(t)p(b(t)v, t∗) = b(t)p0(b(t)v), ∀t ≥ t∗(4.1)

and

µ(∆v, t) = b(t)µ(b(t)∆v, t∗) = b(t)µ0(b(t)v), ∀t ≥ t∗(4.2)

after the relaxation stage corresponding to t < t∗. Here b : (t∗,∞)→ R+ is a time-dependent
coefficient of self-similarity the explicit form of which will be established next.

4.2. Steady state equation. Now we are in a position to justify self-similar behavior of
the one-dimensional coarsening model (1.2). As shown in Section 3, the dynamics of Nt is
governed by equation (2.9). Further, we have the following theorem.

Theorem 2. Equation (2.9) admits a self-similar solution (p0, µ0) if the jump size and the
velocity processes Mt Vt, respectively, are self-similar. The scaling parameter b(t) satisfies

(4.3)

{
b′(t) = −βλ(t)b(t), t ≥ t∗
b(t∗) = 1,

where β is a parameter independent of t but possibly dependent on γ. Moreover, the self-
similar solution pair (p0, µ0) satistifes

(4.4) β[xp0(x)]′ = −
∫ ∞
−∞

µ0(y)[p0(x− y)− p0(x)]dy.

Proof. SinceMt and Vt are self-similar processes, then p(v, t) and µ(∆v, t) have self-similar
forms as shown in (4.1) and (4.2) with scaling parameter b(t). Plugging (4.1) and (4.2) in
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Figure 9. Velocity distribution at different stages of the simulation. Left
column: Unscaled. Right column: Scaled to reveal self-similarity. The

scaling parameter is b(t) =
(

E(Nt)
E(Nt∗ )

)γ
. Top row: γ = 2. Bottom row:

γ = 3.

(2.9),

(4.5) b(t)p′0(b(t)v)b′(t)v + b′(t)p0(b(t)v)

= λ(t)

∫ ∞
−∞

b(t)µ0(b(t)∆v)b(t) [p0(b(t)(v −∆v))− p0(b(t)v)] d(∆v).

Letting x = b(t)v and y = b(t)∆v and simplifying using (4.3),

−βxp′0(x)b(t)λ(t)− βb(t)λ(t)p0(x) = b(t)λ(t)

∫ ∞
−∞

µ0(y)[p0(x− y)− p0(x)]dy

−βxp′0(x)− βp0(x) =

∫ ∞
−∞

µ0(y)[p0(x− y)− p0(x)]dy

β[xp0(x)]′ = −
∫ ∞
−∞

µ0(y)[p0(x− y)− p0(x)]dy.

�

Remark 3. If p0 and µ0 satisfy the integro-differential equation (4.4), then (4.1) and (4.2)
solve (2.9).

Corollary 2. We can represent b(t) as follows

b(t) =

(
E(Nt)

E(Nt∗)

) β
2

.(4.6)
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Figure 10. Velocity jump size distribution at different stages of the simula-
tion. Left column: Unscaled. Right column: Scaled to reveal self-similarity.

The scaling parameter is b(t) =
(

E(Nt)
E(Nt∗)

)γ
. Top row: γ = 2. Bottom row:

γ = 3.

Proof. According to (4.3),

b(t) = exp

(
−β
∫ t

0

λ(s)ds

)
.

Then

b(t) = exp

(
−β
∫ t

0

λ(s)ds

)
= exp

(
−β

2

∫ t

0

λN (s)

E(Ns)
ds

)
= exp

(
−β

2

∫ t

0

− d

ds
E(Ns)

1

E(Ns)
ds

)
= exp

(
−β

2
log

(
E(Nt∗)

E(Nt)

))
=

(
E(Nt)

E(Nt∗)

) β
2

.

�
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4.3. Comparison with simulations. We find it convenient to write (4.4) in the form,

(4.7) βxp0(x) =

∫ x

0

p0(u)du−
∫ ∞
−∞

µ0(y)

(∫ x−y

0

p0(u)du

)
dy

+

∫ ∞
−∞

µ0(y)

(∫ −y
0

p0(u)du

)
dy.

We can show that the third integral on the right hand side of equation (4.7) vanishes because
both p0 and µ0 are even functions, as observed in Figures 9 and 10, i.e.,

(4.8)

∫ ∞
−∞

µ0(y)

(∫ −y
0

p0(u)du

)
dy

=

∫ ∞
0

µ0(y)

(∫ −|y|
0

p0(u)du

)
dy +

∫ 0

−∞
µ0(y)

(∫ |y|
0

p0(u)du

)
dy

= −
∫ ∞
0

µ0(y)

(∫ 0

−|y|
p0(u)du

)
dy +

∫ 0

−∞
µ0(y)

(∫ |y|
0

p0(u)du

)
dy = 0.

Hence, we can simplify (4.7),

βxp0(x) =

∫ x

0

p0(u)du−
∫ ∞
−∞

µ0(y)

(∫ x−y

0

p0(u)du

)
dy.(4.9)

In Figure 11, we show that p0 and µ0 derived from our simulation satisfy (4.9) with the choice
of β = γ

2 for γ = 2 and γ = 3, where the integrals are computed using the trapezoidal rule.
The two graphs in each figure correspond to the left hand side (LHS) and right hand side
(RHS) of the equation (4.9), respectively. It must be noted that when testing other values
of γ, we observe a very good agreement for γ > 2; this agreement progressively worsens
as γ is decreased from 2 to 0. The agreement can be made almost exact by adjusting β;
however, this will destroy self-similarity observed in Figures 9 and 10. The reasons behind
this discrepancy will be explored in a future work.

Figure 11. Comparing the right hand side and left hand side of (4.9).
Left: γ = 2. Right: γ = 3.
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4.4. General relationship between steady-state distributions. Taking the Fourier
transform of (4.4) with β = γ

2 , we have

−γ
2
kp̂′0(k) = −µ̂0(k)p̂0(k) + p̂0(k),(4.10)

where p̂0(k) = F(p0(x)) and µ̂0(k) = F(µ0(x)). Then (4.10) can be written as

1

2

p̂′0(k)

p̂0(k)
=
µ̂0(k)− 1

γk
⇒ p̂0(k) = exp

(
2

γ

∫ k

0

µ̂0(k)− 1

k
dk

)
.(4.11)

Condition (4.11) indicates that the initial distribution of velocities p0 and the initial distri-
bution of velocity jump sizes µ0 depend on each other. Hence it is sufficient to check (4.11)
to know if (4.1) and (4.2) satisfy (2.9). Furthermore, we can use (4.11) to solve for the
non-trivial distribution µ0, i.e.,

µ̂0(k) =
γkp̂′0(k)

2p̂0(k)
+ 1.(4.12)

5. Summary

In this work we consider a simplified one-dimensional coarsening model inspired by earlier
work on modeling grain growth in polycrystals. We generalize the theory of continuous time
random walks to the case of time-dependent jumps and derive the corresponding master
equation that is shown to admit self-similar solutions. Extensive numerical tests confirm
that this framework successfully describes the behavior of the velocity statistics harvested
from the one-dimensional simulation.
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7. Appendix. Superposition of nonhomogeneous Poisson processes

Here we develop a connection between the arrival rates for an ensemble of independent
walkers compared to that for a single walker.

Definition 2. [39] The counting process {nt, t ≥ 0} is said to be a nonhomogeneous Poisson
process with rate function λ(t), if

(1) n0 = 0.
(2) nt, t ≥ 0 has independent increments.
(3) P (nt+h − nt ≥ 2) = o(h).
(4) P (nt+h − nt = 1) = λ(t)h+ o(h).

Theorem 3. Let {ni(t)}Ri=1 be independent nonhomogeneous Poisson processes with rate

λ(t). Define nt =
∑R
i=1 ni(t). Then nt is a nonhomogeneous Poisson process with rate

λR(t) = Rλ(t).
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Proof. We test conditions (1-4) in Definition 2. We start with condition (1),

n0 =

R∑
i=1

ni(0) =

R∑
i=1

0 = 0.

Condition (2) follows from the independence assumption of {ni(t)}Ri=1. Condition (4) follows
from,

P [nt+h − nt = 1] =

R∑
i=1

P [ni(t+ h)− ni(t) = 1]
∏
j 6=i

P [nj(t+ h)− nj(t) = 0]

=

R∑
i=1

(λ(t)h+ o(h))
∏
j 6=i

(1− λ(t)h+ o(h))

=

R∑
i=1

(λ(t)h+ o(h))(1− λ(t)h+ o(h))R−1

= R(λ(t)h+ o(h))(1− λ(t)h+ o(h))R−1

= Rλ(t)h+ o(h)

= λR(t)h+ o(h).

Lastly, condition (3) follows from an argument similar to (4). Hence nt is a nonhomogeneous
Poisson process with rate λR(t) = Rλ(t). �
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