
Computational Materials Science 130 (2017) 282–291
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci
An improved sampling strategy for global energy minimization of multi-
component systems
http://dx.doi.org/10.1016/j.commatsci.2017.01.019
0927-0256/� 2017 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: richard.otis@outlook.com (R. Otis).
Richard Otis a,⇑, Maria Emelianenko b, Zi-Kui Liu a

aDepartment of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, United States
bDepartment of Mathematical Sciences, George Mason University, Fairfax, VA 22030, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 August 2016
Received in revised form 21 December 2016
Accepted 13 January 2017
Available online 2 February 2017

Keywords:
CALPHAD
Thermodynamics
Energy minimization
Miscibility gap
Effective initial sampling plays an important role in capturing key details about the energy surfaces of
multi-component, multi-sublattice phases for the purposes of accurate convergence toward the global
minimum energy configuration of a given system. It is shown that, when using the appropriate statistical
distribution, both quasi-random and pseudo-random sampling methods compare well with the standard
uniform grid-based technique. Moreover, the combination of random sampling with uniform grid points,
while maintaining sampling performance for equilibrium calculations in the Al-Co-Cr system, signifi-
cantly increases performance for a fictive 10-component system.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Miscibility gap detection is a crucial feature in thermodynamic
calculation software to accurately calculate the energy of phases
containing regions of compositional instability and is commonly
handled through global minimization (GM) of the Gibbs energy.
The cause of miscibility gaps in non-ideal solutions is the presence
of energetically unfavorable interactions between components
that overwhelm the entropically-driven ideal mixing contribution
to the Gibbs energy.

To fix notations, let Gi represent the molar Gibbs energy of a
particular phase i within the system, with i ¼ 1; . . . ;K. Further-

more, assume that T is temperature, P is pressure, f i is the fraction
of phase i and yik;j is the site occupation fraction of component j in

sublattice k of phase i. In vector form, let y!¼ fyik;jg
i¼1;...;K

j¼1;...;J;k¼1;...;Mi
,

where K stands for the total number of phases, J for the total num-
ber of system components and Mi for the number of sublattices in

phase i. Similarly, denote f
!¼ ff ig for all i ¼ 1; . . . ;K.

The isothermal-isobaric total molar Gibbs energy minimization
problem for a closed system can be stated in the following
way:
min
f
!

; y!
GmðT; P; f

!
; y!Þ ¼

X
i

f iGiðT; P; y!Þ
 !

ð1Þ

s:t: cnðT; P; f i; y!Þ ¼ 0 ð2Þ
where cn;n ¼ 1; . . . ;C represent all possible equality constraints
including mass balance constraint. Sublattice site fractions are
related to mole fractions by the relation

xij ¼
P

kbkyik;jP
kbkð1� yik;VaÞ

; ð3Þ

where bk is the number of sites on sublattice k and yik;Va is the frac-
tion of vacancies on sublattice k.

Site fraction balance constraints,
P

ky
i
k;j � 1 ¼ 0, are always pre-

sent for each sublattice. This problem is equivalent to solving the
following unconstrained minimization problem for the Lagrangian
L:

min
f
!

; y!
LðT; P; f!; y!; k

!Þ ¼ GmðT; P; f
!
; y!Þ �

XC
n¼1

kncnðT; P; f
!
; y!Þ

 !
;

ð4Þ

where the notation k
!¼ fkngn¼1;...;C is used for the vector of Lagrange

multipliers. The Lagrangian is closely related to the thermodynamic
driving force function by the equality of the chemical potentials to
the values of kn for the mass balance constraints. For further details,
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Fig. 1. Two Al-Co-Cr metastable phase diagrams, including only the bcc phase, are shown at 1523 K. Using the default settings in Thermo-Calc version 2015a, an incorrect
diagram missing the ternary miscibility gap is produced (a). Increasing the global minimization point density or explicitly adding equilibrium points in the miscibility gap
region produces the correct metastable diagram (b).

Fig. 2. The Al-Co (a, b) and Co-Cr (c, d) systems are shown with their internal energy surfaces (a, c) and those configurations mapped to the overall composition space (b, d).
Multiple internal configurations map to the same overall composition, but only the low-energy configurations are relevant to equilibrium. For the Al-Co system, low-energy
configurations are located at the Al:Co and Co:Al end-members, corresponding to the ordered bcc configuration of the phase near 50% Al. Due to crystallographic symmetry,
Al:Co and Co:Al have the same energy, but this is not a requirement of sublattice models in the general case. The disordered bcc configuration, corresponding to the black
dashed line across the diagonal, has higher energy in the composition region near 50% Al. Conversely, in the Co-Cr system, the ordered B2 end-members Co:Cr and Cr:Co are
both much higher in energy than the disordered configuration of the same overall compositions, and that this holds true everywhere in that system at this temperature. This
means B2 will not be observed at that temperature. The Al-Cr system (not shown) has a similar energy surface to the Co-Cr system.
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interested readers are referred to the review of sublattices and the
compound energy formalism found in [1].

From a computational perspective miscibility gaps pose a chal-
lenge, particularly for software employed in the application of the
CALPHAD method [2,3], because they mean that the same phase
may appear on multiple points on the equilibrium tie hyperplane
but with different compositions. In these cases the minimization
algorithm must increase the total degrees of freedom by creating
multiple composition sets of the same phase, potentially up to
the limit specified by the Gibbs phase rule. For multi-component
systems the topology of the energy surfaces can become quite
complex, since the high-dimensional tangent hyperplanes which
define equilibrium can interact with the energy surface in more
complicated ways. Moreover, when handling phases with sublat-
tices, it is possible for points on the global energy surface (the com-
position) to be close together while being far apart in their site
fraction coordinates (the constitution).

Few authors have discussed fully generalized GM schemes.
Notable exceptions include the seminal works of Hillert [4] and
Lukas [5], as well as more recently a discussion of the algorithms
used in the OpenCalphad software [6]. In [7], a general constrained
minimization methodology was proposed where all phases were
duplicated to allow for miscibility gap detection. This strategy is
easy to implement, but suffers an increase of complexity in high
dimensions. The concept of using efficient sampling in this context
was first introduced in low dimensions in [8]. Recently, there has
been some work on tie hyperplane calculation for the multi-
component case [9]. Other notable recent developments in the
field of GM include the use of stochastic techniques such as particle
swarm optimization [10,11], Cuckoo search [12], simulated anneal-
ing [13] and Tabu search [14].
Fig. 3. The standard Halton sequence has problems with linear correlations between som
problem is relatively minor for the 6th, 7th and 8th prime bases (13, 17, 19) but become
34th and 35th prime bases (137, 139, 149) in the standard sequence. Using determinist
Despite these advances, there has been limited discussion of
methods for solving the multi-component case with multiple
sublattices. A general method for this case is discussed in
Section 3, without any attempts to compete with any of the
aforementioned global minimization methodologies. The main
focus of this work is in the development and testing of a multi-
component, multi-sublattice sampling algorithm for generating
an initial composition point set. This investigation is motivated
by the fact that regardless of the choice of the GM solver, reliable
convergence to the global energy minimum requires a good choice
of starting points for the minimization procedure. The proposed
strategy is relevant not only in the context of traditional optimiza-
tion techniques such as Newton-Raphson method, but can help
improve performance of the more sophisticated GMmethods men-
tioned above. Development of such hybrid schemes is beyond the
scope of the current investigations and will be explored in future
work.

The paper is organized as follows. In Section 2 an example is
provided of a practical system containing a miscibility gap where
the deficiencies of current methodology become apparent. Sec-
tion 3 is dedicated to fixing notations and clarifying the details of
the GM method used in this work. Section 4 describes the novel
quasi-random sampling strategy and benchmarks its performance
against commonly used uniform sampling method. The results are
summarized and conclusions are drawn in Section 5.
2. Motivation

A CALPHAD thermodynamic model for the Al-Co-Cr system was
recently developed [15]. This system poses a challenge to CAL-
e dimensions. In some cases this causes significant undersampling of the space. The
s very apparent at high dimensions, as shown by the correlations between the 33rd,
ic scrambling, these correlation effects in higher dimensions can be mitigated.



Fig. 4. Different sampling methods for global minimization are depicted for the two-sublattice bcc phase in the Al-Co-Cr system. Note that the BadUniform points (f) tend to
cluster closer to the center of the triangle, while the Pseudo (e) and quasi-random methods (a–c) do a better job of covering the domain. The Grid method (d) has a distinct
pattern that comes from projecting the higher-dimensional energy surface of the two-sublattice bcc phase onto the global composition triangle.
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PHAD modeling software, despite only containing three compo-
nents, in part due to a ternary miscibility gap in the bcc phase
caused by complex atomic ordering. At 1523 K, for example, there
is no problem plotting the stable diagram with all the phases, but a
problem does emerge when considering the metastable bcc phase
diagram, shown in Fig. 1. Using the default settings in Thermo-Calc
version 2015a, an incorrect diagrammissing the ternary miscibility
gap is produced. Increasing the global minimization point density
or explicitly adding equilibrium points in the miscibility gap region
produces the correct metastable diagram. It is unclear why this
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occurs, and unfortunately the specific details of how phase dia-
gram mapping works in Thermo-Calc are not publicly available,
but the fact that these discrepancies exist at all motivates the pre-
sent study of effective sampling.

It is first useful to understand how this bcc phase is modeled,
according to [15]. The bcc sublattice model is (Al,Co,Cr,Va): (Al,
Co,Cr,Va): (Va), with the third sublattice being empty and therefore
irrelevant to the present discussion. Because this is effectively a
two-sublattice phase, there are multiple internal configurations
which will map to the same overall composition; this is the origin
of the computational difficulty. This is challenging to depict for the
full ternary system so, in Fig. 2, the internal energy surfaces (2a, c)
are depicted for two of the constituent binary subsystems, as well
as their mapping to the overall composition space (2b, d). For the
Al-Co system (2a, b), low-energy configurations are observed at
the Al:Co and Co:Al end-members, corresponding to the ordered
bcc configuration (usually called ‘‘B2”) of the phase near 50% Al.
Due to crystallographic symmetry, Al:Co and Co:Al have the same
energy, but this is not a requirement of sublattice models in the
general case. The disordered bcc configuration (‘‘A2”), correspond-
ing to the black dashed line across the diagonal, has higher energy
in the composition region near 50% Al. Conversely, in the Co-Cr sys-
tem (2b, d), the ordered B2 end-members Co:Cr and Cr:Co are both
much higher in energy than the disordered configuration of the
same overall compositions, and that this holds true everywhere
in that system at 1523 K. This means B2 will not be observed at
that temperature. The Al-Cr system, not shown, has a similar
energy surface to the Co-Cr system.

Based on this analysis of the energy surfaces shown in Fig. 2 it is
not surprising to observe the ternary miscibility gap, given that the
stable configuration of the ternary bcc phase can involve a mixture
of A2- and B2-type internal configurations. The next step is to
develop a better understanding of how the sampling of the bcc
phase’s internal configurations affects the algorithm’s convergence
to the true equilibrium.
3. Numerical approach

Consider the multi-component, multi-phase case for fixed T and
P, with the total mass of the system constrained to be N ¼ 1 mol.
For a j-component system, j� 1 additional constraints must be
specified in order for the problem to be well-defined in accordance
with the Gibbs phase rule. While many types of constraints can be
specified, only specification of the mole fraction of a component, xj,
is explicitly considered here as a possible constraint. For this case,
Algorithm 1 describes one possible approach to starting point
Fig. 5. Normalized uniform distributions produce poorer coverage of composition sp
Woronow [24]. The former distribution corresponds to the method called ‘‘BadUniform
selection, mostly following Sundman [6,16], with a few insignifi-
cant differences in the implementation, as specified below.

Algorithm 1. GM starting point selection procedure

Setup. Initialize matrix M ¼ I 2 RJ�J (identity), chemical
potentials l ¼ ðGmax; . . . ;GmaxÞ 2 RJ�1 and specify the
desired composition vector x0

!¼ fxjgj¼1;...;J .

Step 1. Sample a set of points fyi;sk;jg
i¼1;...;K; s¼1;...;Ni;k

k¼1;...;Mi ; j¼1;...;J
, where Mi is

the number of sublattices in phase i and Ni;k is the
number of sample points in k-th sublattice of phase
i. Sampled points should include fejgj¼1;...;J (corner
points).

Step 2. Compute the molar Gibbs energy values correspond-
ing to all phases and sublattices: fGiðyi;sk;jÞgi;j;k;s, form-

ing a cumulative vector G
!¼ fGqg; q ¼ 1; . . . ;

P
i;kNi;k,

with Gmax ¼ maxqGq. Compute site fractions by sum-

ming over sublattices xi;sj ¼Pkbky
i;s
k;j=ð

P
kbkð1� yi;sk;VaÞÞ

(see (3)). Agglomerate sample points over all
s ¼ 1; . . . ;Ni;k for a component j to form fxqj g
representing all sample points xsj ¼ fxi;sj g

i¼1;...;K
. This

set forms the computational grid used in Steps 3
and 4, which are aimed at determining the lower
convex hull for this set. Initialize index set Q
with J entries to contain indices q of the J corner points.

Step 3. Compute the driving force for each sample point:

DGq ¼ Gq �
PJ

j¼1ljx
q
j . Let q� ¼ argminqDGq (the most

negative driving force), which picks the point Gq�

furthestbelow the line
PJ

j¼1ljx
q
j .

Step 4. Replace each row ofM by xq
��!
, one at a time, and solve

MT f
!
¼ x0

!. If all values f j > 0, choose as the new M

and update the replaced index with q� in the set Q;

otherwise, try replacing the next row instead. Keep

updating the index set Q. Recompute the chemical

potentials by solving the linear system Ml!¼ GQ
�!

to

obtain new values fljgj¼1;...;J
.

Step 5. If jjlnew � loldjj < tol, terminate. Otherwise, go to
Step 3.
ace versus the normalized exponential distribution. This is shown rigorously by
” in this work and, the latter, ‘‘Pseudo.”
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Once a starting point has been selected, the local minimization
problem can also be solved by constructing an augmented Hessian
matrix including all phases’ degrees of freedom and their con-
straints, as shown in (5):
Fig. 6. L1 star-discrepancy calculation for 20000 points over the ðN � 1Þ-simplex. A
large number of points is required because the star-discrepancy measure is not
sensitive enough to capture differences between the sampling methods in higher
dimensions at low point density. The quasi-random sequences have consistently
lower discrepancy than the pseudo-random samples. The ‘‘BadUniform” distribu-
tion shows significantly higher discrepancy due to the poor domain coverage of the
method. The scrambled and standard Halton sequences do not show a significant
difference up to ten components, since this is below the range where linear
correlations appear.

Fig. 7. Grid points tend to lie closer to the equilibrium convex hull of the bcc phase tha
equilibrium convex hull increases from 47% using scrambled Halton sampling to over 6
Wk �AT
k

Ak 0

" #
pk

pk

� �
¼ �rGm;k þ AT

kkk
�ck

" #
; ð5Þ

where p is the Newton step direction for the iteration k and pk is the
step direction for the Lagrange multipliers kk. Wk is the Hessian
matrix of L with respect to all degrees of freedom except kk;Ak is
the Jacobian matrix of the constraints, ½rc1;rc2; . . . ;rcm�T and
rGm;k is the gradient of the molar Gibbs energy of the system. This
is sometimes called the ‘‘Newton-Lagrange” method and is detailed
in standard texts, e.g., Section 18.1 of [17]. A similar approach for
phase diagram calculation was reported by Lukas [5]. The key
advantage of the latter approach is that you can optimize the
degrees of freedom of all phases, including phase fractions and
chemical potentials, simultaneously. The disadvantages are most
apparent in large multi-component systems and systems with mis-
cibility gaps; some procedure for adding and removing composition
sets is required, in which case the system of equations must be
rebuilt every time the stable set of phases changes. In the present
implementation, this issue is addressed by eliminating phases of
the same type when their sublattice site fractions become nearly
equal during the iterative minimization; when the length of a tie-
line approaches zero and the same phase is at both ends, the redun-
dant phase is removed from consideration.

The main focus of this work is incorporating effective sampling
strategies at Step 1 of the global minimization strategy described
above. In what follows, several competing sampling strategies
are compared.
4. Sampling of composition space

Quasi-random sampling is a technique that attempts to aug-
ment the statistical advantages of pseudo-random sampling with
n points sampled randomly. The fraction of sampled points within 10 kJ/mol of the
0% using either combined Halton and Grid sampling or pure Grid sampling.
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the property of low ‘‘discrepancy,” meaning that the points will
tend to evenly distribute throughout the domain. Unlike psuedo-
random number generators, values from quasi-random sequences
are explicitly designed to be biased, particularly toward spreading
out to cover more of the domain. The quasi-random sequence can
be constructed deterministically, and this is a desirable property
from a reproducibility perspective because it ensures that, in prin-
ciple, users with the same software version of the implementation
will always converge to exactly the same solution.

The Halton sequence is an example of a quasi-random sequence
of numbers generated over ð0;1Þ using a prime number as a base
[18]. In low dimensions the N-dimensional Halton sequence is
low-discrepancy, meaning that it is very similar or better than an
equidistributed sequence in terms of domain coverage over

ð0;1ÞN for an equivalent number of points. Note that a sequence
is referred to as equidistributed, or uniformly distributed, if the
proportion of terms falling in a subinterval is proportional to the
length of that interval. For larger N, the algorithm must be modi-
fied to prevent linear correlations between dimensions [19]; here
the scrambling method recommended by Chi et al. [20] is used
because of its effectiveness in reducing correlations, as shown in
Fig. 3.

Similarly, the Sobol sequence [21] is another popular quasi-
random sequence; here the Sobol sequence generator is seeded
using the direction numbers recommended by Bratley and Fox
[22], which are valid up to 40 dimensions, though, more recently,
initializations up to 1111 dimensions have been developed [23].
Because both the Halton and Sobol sequences are extensible, mesh
refinement routines can continually draw from the sequence by
keeping track of the last computed member, without recomputing
the entire sequence.

The quasi-random sequence alone does not meet the sampling
requirement for composition space because it samples the N-
hypercube, implying that allN dimensions are independent, but each
sublattice’s site fractions must sum to unity in order to obey the site
fraction balance constraint. Instead the ðN � 1Þ-simplex must be
sampled within each sublattice since the last coordinate is depen-
dent. The most straightforward approach is to normalize each gener-
ated point so that each sublattice’s coordinates sum to unity, but this
will tend to oversample the middle of the simplices, as shown in
Fig. 5. Woronow [24] showed that uniformly distributed variates
on the ðN � 1Þ-simplex follow a N-dimensional symmetric Dirichlet
distribution, which for the case of the full composition range simpli-
fies to N samples from a standard exponential distribution divided
by their sum. Exponentially distributed variates can be generated
with the inverse transformation � lnðUÞ, where U is a uniform ran-
dom or quasi-random variate.

Because the Halton and Sobol sequences have the low discrep-
ancy property, they can substitute for the uniform distribution;
anywhere a uniform pseudo-random variate U would be used, it
can be replaced with a value from a quasi-random sequence. This
leads to the following general strategy for sampling, with specific
methods subsequently listed.
4.1. General simplex sampling strategy

1. Let N be equal to the total number of independent variables for
a given phase.

2. Draw the first K points from an N-dimensional pseudo-random
distribution or quasi-random sequence. Store the result in a
K � N matrix, M.

3. Compute � lnðMÞ elementwise and store as the new M.
4. Group together columns of M corresponding to each sublattice.

Compute the row-wise sum of each group and divide each ele-
ment by its corresponding group’s sum.
For this work, K ¼ 20ðN � SÞ, where S is the number of
sublattices.

4.2. Sampling methods

� Pseudo: Sample the uniform distribution.
� BadUniform: Same as Pseudo, but skip the negative-log
transformation.

� StandardHalton: Choose the Halton sequence, using the first N
primes.

� ScrambledHalton: Same as StandardHalton, but apply the
scrambled method of Chi et al. [20]. This is often shortened to
simply ‘‘Halton” when discussing the implementation.

� Sobol: Choose the Sobol sequence, seeded with the initializa-
tion numbers by Bratley and Fox [22].

In addition, these strategies are compared to a uniform grid-
based sampling method referred to in this work as Grid, where
evenly-spaced points are generated between all pairs of sublattice
end-members. This is similar to the strategy employed by most
CALPHAD software packages. (The exact strategy cannot be com-
pared because the details are not published.) Fig. 4 visually depicts
these methods for the bcc phase of the Al-Co-Cr system. (See Sec-
tion 2 for details.) There are fewer sampled points at the corners of
Al-Co-Cr because the mole fractions are not being uniformly sam-
pled; rather, a higher-dimensional energy surface is being uni-
formly sampled and then projected back to mole fraction space.
It is the clearest to see with the Grid sample subfigure that what
are really being depicted are the features of a high-dimensional
object, projected down to 2-D.

To quantitatively describe the deviation of a sampling method
from an ideal lattice of points, which is not feasible to generate
in higher dimensions, the discrepancy is computed. As noted ear-
lier, the concept of discrepancy is that, for any arbitrary subregion
of the domain, it is expected (or desired) that the fraction of sam-
pled points contained within the subregion will be equal to the vol-
ume fraction of the subregion. The point fractions and volume
fractions of all possible subregions are computed along with the
absolute difference between the two, and then the maximum value
is taken as the discrepancy of the point set. Searching all possible
subregions is computationally difficult, especially in higher dimen-
sions. For this comparison instead the ‘‘star-discrepancy” is com-
puted, which restricts the subregions to be hypercube-shaped
and anchored at the origin and each point. This generates K possi-
ble subregions and requires only OðK2Þ computations for the point
fractions. The fact that the space is actually a simplex poses no dif-
ficulty, since all the generated subregions using this approach will
still be contained within the simplex.

Fig. 6 shows the result of an L1 star-discrepancy calculation for
20000 points using different sampling methods over the ðN � 1Þ-
simplex. L1 refers to the norm used to compute the difference
between the volume and point fractions. A relatively high number
of points are required, much higher than what is used in a typical
equilibrium calculation, because the star-discrepancy measure is
not sensitive enough to capture differences between the sampling
methods in higher dimensions when the point density is low. The
quasi-random sequences are shown to have consistently lower dis-
crepancy than the pseudo-random samples. The ‘‘BadUniform” dis-
tribution shows significantly higher discrepancy due to the poor
domain coverage of the method. The scrambled and standard Halton
sequences do not show a significant difference up to ten compo-
nents, since this is below the range where linear correlations appear.

For sampling in real systems, all sublattice end-members for
each phase are also included by the algorithm to guarantee the
convex hull of the points contains all of constitution space. An



Fig. 8. The error in the Gibbs energy, computed by an equilibrium calculation at 1523 K in the Al-Co-Cr system, using the sampling schemes introduced in Section 4, is shown.
The energy error is based on a comparison to a high-precision calculation, with the deep red color corresponding to a convergence failure. The BadUniform method (e)
underperforms relative to the other methods. Pseudo (c) performs similarly to ScrambledHalton (a). The addition of points generated using the Grid method (b, d, f) reduces
the error. The addition of points from the Grid method is beneficial to convergence because the equilibrium configurations in the bcc phase tend to lie along lines connecting
pairs of end-members, the same lines which are sampled by the Grid method.
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exception is the case of pure-vacancy end-members, since the
molar Gibbs energy (G=N) is not defined in the limit of pure vac-
uum (N ! 0).
Another approach called rejection sampling [25], which
involves sampling the N-hypercube and throwing out all points
that fall outside the ðN � 1Þ-simplex, is not considered in this work.



Fig. 9. The results of 50 randomly-generated trials of x� are shown for numbers of components ranging from 2 to 10. The cases of pure Grid (a), pure random (b), and
combined sampling (c) are considered. It is observed that, while the BadUniform method underperforms as expected, neither pure Grid nor any of the random sampling
methods are able to find more than 80% of the global minima in the test systems when considering more than 6 components. The combined random + Grid strategy has
significantly better results, with all methods finding at least 90% of the global minima, and all methods with the exception of BadUniform finding 100% of the 10-component
global minima.

290 R. Otis et al. / Computational Materials Science 130 (2017) 282–291
The problem with rejection sampling is that the fraction of rejected
points quickly increases with N, making it very inefficient for
multi-component systems.
4.3. Performance of sampling methods

Fig. 8 shows the result of an equilibrium calculation at 1523 K in
the Al-Co-Cr system using the sampling schemes introduced in
Section 4. For this test the fcc and liquid phases are included along
with bcc to make the test more realistic. The fully stable system
also includes some intermetallics, which are neglected here. The
color corresponds to the error in the total molar Gibbs energy
when compared to a high-precision calculation, with the deep
red color corresponding to a convergence failure. From the figure
it is shown that the sampling methods perform roughly with the
same trend as would be predicted by the discrepancies of their
respective point sets, with the BadUniform method consistently
underperforming relative to the other methods. The addition of
points generated using the Grid method consistently reduces the
error, and in many cases the reduction is to zero.

The addition of points from the Grid method is beneficial to
convergence because the equilibrium configurations in the bcc
phase tend to lie along lines connecting pairs of end-members,
the same lines which are sampled by the Grid method. This is
shown graphically in Fig. 7, where it can be seen that Grid
points tend to lie closer to the equilibrium convex hull of the
bcc phase than points sampled randomly. The fraction of sam-
pled points within 10 kJ/mol-atom of the equilibrium convex
hull increases from 47% using scrambled Halton sampling to
over 60% using either combined Halton and Grid sampling or
pure Grid sampling. The combined sampling method (‘‘random
+ Grid”) is simply the combination of points from a particular
random sampling technique with points sampled by the Grid
method.

It is not a surprising result to find that regular lattices of points
are an effective sampling strategy. The reason that other
approaches must be considered is that dense lattices are impracti-
cal to construct in higher dimensions due to the exponential
increase in the number of required points.

Illustrating the value of random sampling with a real exam-
ple is difficult due to the lack of publicly available multi-
component CALPHAD databases with known, complex miscibil-
ity gap behavior, so instead a fictive system is constructed by
adopting a global optimization test function [26], reproduced
in Eq. (6) below. A similar test function was used to study glo-
bal minimization performance in the CALPHAD software pack-
age Pandat [27].

f ðxÞ ¼ s
Xn
i¼1

ðxi � x�i Þ2 þ
Xkmax

k¼1

ak sin
2ðf k

Xn
i¼1

ðxi � x�i ÞkÞ ð6Þ
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This function is an n-dimensional paraboloid, centered at x�,
with a second, strictly non-negative oscillating term. The second
term can introduce curvature changes to the function’s surface,
making convergence to the global minimum more challenging.
Because the second term is non-negative, it is clear that the global
minimum value of this function must be zero, and that it takes on
this value at x ¼ x�. (It is possible, for some choices of free param-
eters, for f ðxÞ to have a value of zero at locations other than x�.) n is
the dimension of the space while s; ak and f k are scaling parame-
ters. The parameters are set kmax ¼ 2; f k ¼ 10; ak ¼ 103; s ¼ 104.

Fig. 9 shows the results of 50 randomly-generated trials of x� for
numbers of components ranging from 2 to 10. The cases of pure
Grid, pure random, and combined sampling are considered. The
number of points used for each random sampling calculation is
20ðN � 1Þ, where N is the number of components, while the num-

ber of points for Grid sampling is 20 N
2

� � ¼ 20
PN�1

i¼1 i, but some Grid
points will be repeated. It is observed that, while the BadUniform
method underperforms as expected, neither pure Grid nor any of
the random sampling methods are able to find more than 80% of
the global minima in the test systems when considering more than
6 components. The combined random + Grid strategy has signifi-
cantly better results, with all methods finding at least 90% of the
global minima, and all methods with the exception of BadUniform
finding 100% of the 10-component global minima.

5. Conclusion

Global energy minimization poses substantial theoretical and
practical challenges to the CALPHAD modeling community. This
work advances understanding of the role that effective sampling
plays in capturing key details about the energy surfaces of phases,
particularly multi-component, multi-sublattice phases, for the pur-
poses of accurate convergence toward the global minimum energy
configuration of the system. Both quasi-random and pseudo-
random sampling methods compare well with the standard uni-
form grid-based technique. Moreover, the combination of random
sampling with grid points, while maintaining sampling perfor-
mance for a real-world multi-sublattice Al-Co-Cr system, also sig-
nificantly increases performance for a fictive 10-component
system. Further work is needed to understand how the perfor-
mance advantage provided by a combined random + Grid sampling
approach can be generalized to a greater variety of phase models
found in CALPHAD modeling.
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