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ABSTRACT

Cellular networks are ubiquitous in nature. Most engineered materials are polycrystalline mi-
crostructures composed of a myriad of small grains separated by grain boundaries, thus comprising
cellular networks. The recently discovered grain boundary character distribution (GBCD) is an
empirical distribution of the relative length (in 2D) or area (in 3D) of interface with a given lattice
misorientation and normal. During the coarsening, or growth, process, an initially random grain
boundary arrangement reaches a steady state that is strongly correlated to the interfacial energy
density. In simulation, if the given energy density depends only on lattice misorientation, then the
steady state GBCD and the energy are related by a Boltzmann distribution. This is among the
simplest non-random distributions, corresponding to independent trials with respect to the energy.
Why does such simplicity emerge from such complexity? Here we describe an entropy based theory
which suggests that the evolution of the GBCD satisfies a Fokker-Planck Equation, an equation
whose stationary state is a Boltzmann distribution.

1. INTRODUCTION

Cellular networks are ubiquitous in nature. They exhibit behavior on many different length and
time scales and are generally metastable. Most technologically useful materials are polycrystalline
microstructures composed of a myriad of small monocrystalline grains separated by grain bound-
aries, and thus comprise cellular networks. The energetics and connectivity of the grain boundary
network plays a crucial role in determining the properties of a material across a wide range of scales.
A central problem is to develop technologies capable of producing an arrangement of grains that
provides for a desired set of material properties. Traditionally our focus has been on distributions of
geometric features, like cell size, and a preferred distribution of grain orientations, termed texture.
Attaining these gives the configuration order in a statistical sense.

During coarsening, it is the cell boundaries that are changing, so any order in the configura-
tion is conferred by this boundary network. Recent mesoscale experiment and simulation permit
harvesting large amounts of information about both geometric features and crystallography of the
boundary network in material microstructures, [1],[2],[23],[29],[30]. This has led us to the intro-
duction of the Grain Boundary Character Distribution (GBCD). The grain boundary character
distribution is an empirical distribution of the relative length (in 2D) or area (in 3D) of interface
with a given lattice misorientation and grain boundary normal. We now describe two discover-
ies. The first is that during the growth process, an initially random grain boundary arrangement
reaches a steady state that is strongly correlated to the interfacial energy density. In simulation,
a stationary GBCD is always found. Moreover there is consistency between experimental GBCD’s
and simulated GBCD’s, [23]. The boundary network of a cellular structure is naturally ordered.

A second discovery is that if the given interfacial energy depends only on lattice misorientation,
then the steady state GBCD and the energy density are related by a Boltzmann distribution. This is
among the simplest non-random distributions, corresponding to independent trials with respect to
the density. Such straightforward dependence between the character distribution and the interfacial
energy offers evidence that the GBCD is a material property. Thus there is a natural order to the
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grain boundary network. The GBCD becomes a leading candidate to characterize texture of the
boundary network [23].

Here we summarize our recent work developing an entropy based theory that suggests that the
evolving GBCD satisfies a Fokker-Planck Equation, [5],[11], cf. also [6], [4],[12] to which we refer
for a more complete exposition. Coarsening in polycrystalline systems is a complicated process
involving details of material structure, chemistry, arrangement of grains in the configuration, and
environment. In this context, we consider just two competing global features, as articulated by
C. S. Smith [31]: cell growth according to a local evolution law and space filling constraints. We
shall impose curvature driven growth for the local evolution law, cf. Mullins [28]. Space filling
requirements are managed by critical events, rearrangements of the network involving deletion of
small contracting cells and facets. The behavior of the system is then embodied in a dissipation
relation. With this relation, the properties of this system that characterize the GBCD must be
identified and appropriately upscaled or ‘coarse-grained’. Indeed, we have no direct way to deter-
mine the stationary GBCD. In fact, we direct our attention to a deeper result. The kinetics of the
GBCD, its trajectory as a function of time, are identified as resembling the mass transport implicit
scheme for the Fokker-Planck equation [20]. This will be described further ahead in the text. For
a perspective on these issues, we recommend the article by R. V. Kohn [26]. To our knowledge,
this, and the simplified model of Section 3, are the first experimental systems whose kinetics are
identified by the mass transport implicit scheme of [20].

The general platform for this investigation is large scale computation. The laboratory is the
venue to assess the validity of the local evolution law. Once this law is adopted, we appeal to
simulation, since we cannot control all the elements present in the experimental system, many of
which are unknown. On the other hand, in silico we may exercise, or at least we may attempt to
exercise, precise control of the variables appropriate to the evolution law and the constraint.

2. MESOSCALE THEORY

The common denominator theory for the mesoscale description of microstructure evolution is
curvature driven growth, the Mullins Equation (2.2) below, for the evolution of curves or arcs
individually or in a network. We employ this for our local law of evolution. Boundary conditions
must be imposed where the arcs meet. This condition is the Herring Condition, (2.3), which is the
natural boundary condition at equilibrium for the Mullins Equation. Since their introduction by
Mullins, [28], and Herring, [18], [19], a large and distinguished body of work has grown about these
equations. Most relevant to here are [17], [14], [22]. Curvature driven growth has classical origins,
dating at least to Burke and Turnbull [15]. Let α denote the misorientation between two grains
separated by an arc Γ, as noted in Figure 1, with normal n = (cos θ, sin θ), tangent direction b and
curvature κ. Let ψ = ψ(θ, α) denote the energy density on Γ. So

Γ : x = ξ(s, t), 0 5 s 5 L, t > 0, (2.1)

with

b =
∂ξ

∂s
(tangent) and n = Rb (normal)

v =
∂ξ

∂t
(velocity) and vn = v · n (normal velocity)

where R is a positive rotation of π/2. The Mullins Equation of evolution is

vn = (ψθθ + ψ)κ on Γ. (2.2)

We assume that only triple junctions are stable and that the Herring Condition holds at triple
junctions. This means that whenever three curves, {Γ(1),Γ(2),Γ(3)}, meet at a point p the force



Figure 1. An arc Γ with normal n, tangent b, and lattice misorientation α, illustrating lattice elements.

balance, (2.3) below, holds: ∑
i=1,..,3

(ψθn
(i) + ψb(i)) = 0. (2.3)

Consider a network of grains bounded by {Γi} subject to some condition at the border of the
region they occupy, like fixed end points or periodicity. For the description of the algorithms used
in the simulation, the reader can consult [24],[21]. The typical simulation consists in initializing a
configuration of cells and their boundary arcs, usually by a modified Voronoi tessellation, and then
solving the system (2.2), (2.3), eliminating facets when they have negligible length and cells when
they have negligible area. The total energy of the system is given by

E(t) =
∑
{Γi}

∫
Γi

ψ|b|ds. (2.4)

Owing to the Herring Condition (2.3), in an interval (t0, t0 + τ) where there are no critical events,
we obtain the dissipation relation∑

{Γi}

∫ t0+τ

t0

∫
Γi

v2
ndsdt+ E(t0 + τ) = E(t0) (2.5)

which bears a strong resemblance to the simple dissipation relation for an ensemble of inertia free
springs with friction. In the simulation, the facet interchange and cell deletion are arranged so that
(2.5) is maintained as an inequality.

Suppose, for simplicity, that the energy density is independent of the normal direction, so ψ =
ψ(α), the situation that will concern us here. Then (2.2) and (2.3) may be expressed

vn = ψκ on Γ (2.6)∑
i=1,...,3

ψb(i) = 0 at p, (2.7)

where p denotes a triple junction. (2.7) is the same as the Young wetting law.
For this situation we define the grain boundary character distribution, GBCD,

ρ(α, t) = relative length of arc of misorientation α at time t,

normalized so that

∫
Ω
ρdα = 1.

(2.8)

3. A SIMPLIFIED COARSENING MODEL WITH ENTROPY AND DISSIPATION

A significant difficulty in developing a theory for the GBCD, and understanding texture devel-
opment in general, lies in the lack of understanding of consequences of rearrangement events or
critical events, facet interchange and grain deletion, on network level properties. For example, in
Fig. 2, the average area of five-faceted grains during a growth experiment on an Al thin film and



the average area of five-faceted cells in a typical simulation both increase with time. Now the von
Neumann-Mullins Rule is that the area An of a cell with n-facets satisfies

A′n(t) = c(n− 6), (3.1)

when ψ = const. and triple junctions meet at angles of 2π/3,[27],[32]. This is thought to hold
approximately when anisotropy is small. The von Neumann-Mullins Rule does not fail in the
example above, of course, but cells observed at later times had 6, 7, 8, ... facets at earlier times.
Thus in the network setting, changes which rearrange the network play a major role.

Figure 2. The average area of five-sided cell populations during coarsening in two different
cellular systems showing that the von Neumann-Mullins n− 6-Rule (3.1) does not hold at the scale
of the network. (left) In an experiment on Al thin film, [7], and (right) a typical simulation (arbitrary

units).

To address these issues, we will examine a much simpler 1 D model which retains kinetics and
critical events but neglects curvature driven motion of the boundaries. We have used this model to
develop a statistical theory for critical events, [9],[10],[8]. It has been found to have its own GBCD
as well, [4],[6],[5],[11], which we shall now review.

Our main idea in [4],[6],[5],[11] is that the GBCD statistic for the simplified model resembles the
solution of a Fokker-Planck Equation via the mass transport implicit scheme, [20]. In [4],[6],[5],[11]
the simplified model is formulated as a gradient flow which results in a dissipation inequality analo-
gous to the one found for the coarsening grain network. Because of this simplicity, it will be possible
to ‘upscale’ the network level system description to a higher level GBCD description that accomo-
dates irreversibility. A more useful dissipation inequality is obtained by modifying the viscous term
to be a mass transport term, which now brings us to the realm of the Kantorovich-Rubinstein-
Wasserstein implicit scheme. As this changes the ensemble, there is an entropic contribution,
which we take to be proportional to configurational entropy. This then suggests the Fokker-Planck
paradigm which we describe in Section 3.2.

We do not know, of course, that the statistic is a solution of the Fokker-Planck PDE but we can
ask if it shares important aspects of Fokker-Planck behavior. We give evidence for this by asking
for the unique ‘temperature-like’ parameter, the factor noted above, the relative entropy achieves
a minimum over long time. The empirical stationary distribution and Boltzmann distribution with
the special value of ‘temperature’ are in excellent agreement. This gives an explanation for the
stationary distribution and the kinetics of evolution. Although we are not presenting arguments
that two dimensional network has the detailed dissipative structure of the simplified model, we are
able to produce evidence that the same argument employing the relative entropy does suggest the
correct kinetics and stationary distribution.



3.1. Formulation. The simplified coarsening model, driven by the boundary conditions, reflects
the dissipation relation of the grain growth system. It also resembles an ensemble of inertia-free
spring-mass-dashpots. It is an abstraction of the role of triple junctions in the presence of the
rearrangement events. We give a careful formulation. Let I ⊂ R be an interval of length L
partitioned by points xi, i = 1, . . . , n, where xi < xi+1, i = 1, . . . , n− 1 and xn+1 identified with x1.
For each interval [xi, xi+1], i = 1, . . . , n select a random misorientation number αi ∈ (−π/4, π/4].
The intervals [xi, xi+1] correspond to grain boundaries (but not the 1D “grain”) with misorientations
αi and the points xi represent the triple junctions. Choose an energy density ψ(α) = 0 and introduce
the energy

E =
∑

i=1,...,n

ψ(αi)(xi+1 − xi). (3.2)

To have consistency with the evolution of the 2D cellular network, we impose gradient flow kinetics
with respect to (3.2), which is just the system of ordinary differential equations

dxi
dt

= −∂E
∂xi

, i = 1, ..., n, that is

dxi
dt

= ψ(αi)− ψ(αi−1), i = 2...n, and
dx1

dt
= ψ(α1)− ψ(αn).

(3.3)

The velocity vi of the ith boundary is

vi =
dxi+1

dt
− dxi

dt
= ψ(αi−1)− 2ψ(αi) + ψ(αi+1). (3.4)

Next consider for the 1D system (3.3), a time interval (t0, t0 + τ) with no critical events for now.
Then we obtain, after some algebra, an analog of the grain growth spring-mass-dashpot-like local
dissipation inequality.

1

4

∑
i=1...n

∫ τ

0
v2
i dt+ E(t0 + τ) 5 E(t0) (3.5)

As explained in [6],[5],[11], we can introduce now the idea of GBCD for the simplified 1D model.
Let us consider a new ensemble based on the misorientation parameter α where we take Ω : −π

4 5
α 5 π

4 , for later ease of comparison with the two dimensional network for which we are imposing
“cubic” symmetry, i.e., “square” symmetry in the plane. The GBCD or character distribution in
this context is, as expected, the histogram of lengths of intervals sorted by misorientation α scaled
to be a probability distribution on Ω as described in (2.8). One may express (3.5) in terms of the
character distribution (2.8), which amounts to

µ0

∫ t0+τ

t0

∫
Ω
|∂ρ
∂t

(α, t)|2dαdt+

∫
Ω
ψ(α)ρ(α, t0 + τ)dα 5

∫
Ω
ψ(α)ρ(α, t0)dα, (3.6)

where µ0 > 0 is some constant.
The expression (3.6) is in terms of the new misorientation level ensemble, upscaled from the

local level of the original system. We now introduce, as discussed earlier, the modeling assumption,
consistent with the lack of reversibility when rearrangement/or critical events occur and add an
entropic contribution to (3.6). We consider standard configurational entropy,

+

∫
Ω
ρ log ρdα, (3.7)

although this is not the only choice. Minimizing (3.7) favors the uniform state, which would be the
situation were ψ(α) = constant. A tantalizing clue to the development of texture will be whether
or not this entropy strays from its minimum during the simulation.



Given that (3.6) holds, we assume now that there is some λ > 0 such that for any t0 and τ
sufficiently small that

µ0

∫ t0+τ

t0

∫
Ω

(
∂ρ

∂t
)2dαdt+

∫
Ω

(ψρ+ λρ log ρ)dα|t0+τ 5
∫

Ω
(ψρ+ λρ log ρ)dα|t0 (3.8)

E(t) was analogous to an internal energy or the energy of a microcanonical ensemble and now

F (ρ) = Fλ(ρ) = E(t) + λ

∫
Ω
ρ log ρdα (3.9)

is a free energy. The value of the parameter λ is unknown and will be determined in the Validation
Section 4. Finally, the first term in (3.8) can be estimated from below to represent energy lost due
to frictional or viscous forces (for details cf. [11]). This results in the inequality, valid the pair v, ρ

µ

2

∫ τ

0

∫
Ω
v2ρdαdt+ Fλ(ρ) 5 Fλ(ρ∗) where

ρt + (vρ)α = 0, (continuity equation)

ρ = ρ|t0+τ and ρ∗ = ρ|t0 for some fixed µ > 0.

(3.10)

3.2. The mass transport paradigm. Among the equivalent formulations of the Kantorovich
-Rubinstein-Wasserstein metric, or simply the Wasserstein metric, by a result of Benamou and
Brenier [13], is a minimum principle related to (3.10). Given two probability densities ρ∗, ρ on Ω,
this metric d is

1

τ
d(ρ, ρ∗)2 = inf

∫ τ

0

∫
Ω
v2ρdξdt

over deformation paths ρ(ξ, t) subject to

ρt + (vρ)ξ = 0, (continuity equation) and

ρ(ξ, 0) = ρ∗(ξ), ρ(ξ, τ) = ρ(ξ) (initial and terminal conditions)

(3.11)

With this in mind, we replace (3.10) by an implicit scheme: Given ρ∗ determine ρ the solution of
the variational problem

µ

2τ
d(ρ, ρ∗)2 + Fλ(ρ) = inf

{η}
{ µ

2τ
d(η, ρ∗)2 + Fλ(η)} (3.12)

Now for each relaxation time τ > 0 we determine iteratively the sequence {ρ(k)} by choosing

ρ∗ = ρ(k−1) and ρ(k) = ρ in (3.12) and setting

ρ(τ)(α, t) = ρ(k)(α) in Ω for kτ 5 t < (k + 1)τ. (3.13)

We then anticipate recovering the GBCD ρ as

ρ(α, t) = lim
τ→0

ρ(τ)(α, t), (3.14)

with the limit taken in a suitable sense. It is known that ρ obtained from (3.14) is the solution of
the Fokker-Planck Equation, [20],

µ
∂ρ

∂t
=

∂

∂α
(λ
∂ρ

∂α
+ ψ′ρ) in Ω, 0 < t <∞. (3.15)

We might point out here, as well, that a solution of (3.15) with periodic boundary conditions and
nonnegative initial data is positive for t > 0.

Hence the upscaled dissipation inequality (3.10) leads to the implicit scheme (3.12) and thus to
the Fokker-Planck Equation (3.15). A further investigation of the intimate connection between the
simplified problem and the Ornstein-Uhlenbeck process is forthcoming [3]. A derivation of (3.15)
directly for the two-dimensional coarsening system is forthcoming in [25].



4. VALIDATION OF THE SCHEME

We now begin the validation step of our theory. The procedure which leads to the implicit scheme,
based on the dissipation inequality (3.5), holds for the entire system but does not identify individual
intermediate ‘spring-mass-dashpots’. The consequence is that we cannot set the temperature-like
parameter σ, but in some way must decide if one exists. Introduce the notation for the Boltzmann
distribution with parameter λ

ρλ(α) =
1

Zλ
e−

1
λ
ψ(α), α ∈ Ω, with Zλ =

∫
Ω
e−

1
λ
ψ(α)dα. (4.1)

With validation we would gain qualitative properties of solutions of (3.15):

• ρ(α, t)→ ρσ(α) as t→∞, and
• this convergence is exponentially fast.

We shall approach this by introducing a simple convex duality problem for the Kullback-Leibler
relative entropy. It is a maximum likelihood test. The Kullback-Leibler relative entropy for (3.15)
is given by

Φλ(η) = Φ(η‖ρλ) =

∫
Ω
η log

η

ρλ
dα =

∫
Ω
{ψλη + η log η}dα where

η = 0 in Ω,

∫
Ω
ηdα = 1 and ψλ =

ψ

λ
+ logZλ.

(4.2)

with ρλ from (4.1). By Jensen’s Inequality it is always nonnegative. In terms of the free energy
(3.9) and (4.1), (4.2) is given by

Φλ(η) =
1

λ
Fλ(η) + logZλ. (4.3)

(Note: In our earlier work [5, 11], we defined relative entropy to be λ times (4.2).) A solution ρ of
(3.15) has the property that

Φλ(ρ)→ 0 as t→∞. (4.4)

Therefore, we seek to identify the particular λ = σ for which Φσ defined by the GBCD statistic
ρ tends monotonically to the minimum of all the {Φ(ρ‖ρλ)} as t becomes large. We then ask if
the terminal, or equilibrium, empirical distribution ρ is equal to ρσ. Now the manifold of functions
{ψλ} is a strictly convex in terms of the ‘inverse temperature’ β = 1

λ , β > 0, and thus there is a
unique ψσ such that ∫

Ω
{ψσρ+ ρ log ρ}dα = inf

{ψλ}

∫
Ω
{ψλρ+ ρ log ρ}dα. (4.5)

The information theory interpretation of (4.5) is that we are minimizing the information loss among
trial encodings of the alphabet represented by the statistic ρ. In this sense we see that asking for
an optimal distribution ρσ to represent our statistic ρ, necessarily introduces (relative) entropy in
our considerations, returning us, as it were, full circle. This also is similar to a large deviation
principle.

5. THE ENTROPY METHOD FOR THE GBCD

We shall apply the method of Section 4 to the GBCD harvested from the 2D simulation. Here
we present only a typical simulation with the energy density

ψ(α) = 1 + ε(sin 2α)2, −π
4
5 α 5

π

4
, ε = 1/2, (5.1)

Figure 3, initialized with 104 cells and normally distributed misorientation angles and terminated
when 2000 cells remain. At this stage, the simulation is essentially stagnant. Five trials were exe-
cuted and we consider the average of ρ of the empirical GBCD’s. Possible ‘temperature’ parameters



λ and ρλ in (4.1) for the density (5.1) are constructed. This ρλ then defines a trial relative entropy
via (4.2). We now identify the parameter σ, which turns out to be σ ≈ 0.1, and the value of the
relative entropy Φσ(T∞) ≈ 0.01, which is about 10% of its initial value, Figure 4. From Figure 5
(left), we see that this relative entropy Φσ has exponential decay until it reaches time about t = 1.5,
after which it remains constant. The averaged empirical GBCD is compared with the Boltzmann
distribution in Figure 5 (right). The solution itself then tends exponentially in L1 to its limit ρσ
by the Kullback-Leibler Inequality.

Figure 3. (left) The energy density ψ(α) = 1 + ε sin2 2α, |α| < π/4, ε = 1
2
. (right) The

configurational entropy of ρ(α, t) as a function of time t is increasing, suggesting the development
of order in the configuration.

Figure 4. In these plots, the GBCD ρ is averaged over 5 trials. (left) The relative entropy of
the grain growth simulation with energy density (5.1) for a sequence of Φλ vs. t with the optimal
choice σ ≈ 0.1 noted in red. (right) Relative entropy for an indicated range of values of temperature
parameter λ at the terminal time t = 2.3. The minimum value of the relative entropy is ≈ 0.01.

6. SUMMARY

Engineering the microstructure of a material is a central task of materials science and its study
gives rise to a broad range of basic science issues, as has been long recognized. Central to these



Figure 5. In these plots, the GBCD is averaged over 5 trials. (left) Plot of − log Φσ vs. t with
energy density (5.1). It is approximately linear until it becomes constant showing that Φσ decays
exponentially.(right) GBCD ρ (red) and Boltzmann distribution ρσ (black) for the potential ψ of
(5.1) with parameter σ ≈ 0.1 as predicted by our theory.

issues is the coarsening of the cellular structure. Here we have outlined an entropy based theory
of the GBCD which is an upscaling of cell growth according to the two most basic properties of
a coarsening network: a local evolution law and space filling constraints. The theory acomodates
the irreversibility conferred by the critical events or topological rearrangements which arise during
coarsening. It adds to the body of evidence that the evolution of the boundary network is the
primary origin of texture development. It accounts both for the GBCD statistic and its kinetics by
associating them with the mass transport implicit scheme. To our knowlege, this is the first imple-
mentation of the mass transport implicit scheme to the kinetic behavior of experimental systems.
An undetermined temperature-like parameter is found by a convex dual problem reminiscent of a
large deviation principle.
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