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Abstract
We propose a new algorithm for minimizing the Gibbs energy functional and constructing phase
diagrams through utilizing geometric properties of the energy surfaces together with effective
sampling techniques to improve on the starting points for the minimization. The new method
possesses advantages over existing methods in terms of computational complexity and can be
used to automate the calculation of phase equilibria in complex systems. Numerical results for
binary and ternary systems are presented. Generalizations to higher dimensions are discussed.
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1. Introduction

Phase diagrams are visual representations of the equilibrium phases in a material as a function of
temperature, pressure and concentrations of the constituent components and are frequently used
as basic blueprints for materials research and development. Under typical experimental
conditions of constant pressure and temperature and a closed system, calculated phase equilibria
are obtained via minimization of the total Gibbs energy of a system by adjusting the
compositions and amounts of all individual phases in the system. As in any minimization
procedure, the starting values play an important role due to the existence of many possible
metastable states.

Many existing software packages lack the ability to automatically determine system properties
from initial data and can produce metastable equilibria instead of stable ones or simply diverge if
the initial guess is not good enough. Several algorithms were proposed to automate the process
of finding suitable starting positions, all of which carry an increased computational cost. In this
paper we make an attempt to improve on the existing strategies for automating phase diagram
calculations by introducing a novel reduced complexity algorithm based on adaptive critical
point detection approach. The main advantage of the new scheme lies in its ability to effectively
reduce the total number of trial calculations by recognizing the importance of geometry specific
properties of the Gibbs energies.
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We start with an introduction to the necessary theoretical background and a short overview of
existing techniques, which are succeeded by the detailed description of the new algorithm as well
as its generalizations in section 3. Section 4 contains the results of several numerical calculations
for binary and ternary systems. Some concluding remarks are made in section 5.

2. Theoretical aspects of phase diagram calculation
2.1. Mathematical model

Let us fix both the temperature and the pressure as independent system variables with a total of
one mole of components. Let f, be the total content of the k-th component in the system and f;

the content of the k-th component in the i-th phase and £ the number of moles of the phase i

K
(by our assumption Z fili=f"). We also let £ =(f,) r-1...x - Since it is easier to work with

k=1
molar quantities, we use x” =(x}),_ . =(f{/f ") x to denote the vector consisting of
mole fractions of the k -th component in the phase i and G is the corresponding molar Gibbs
energy. In this case, the equilibrium analysis of a K -component system with n phases leads to
the following Gibbs energy minimization problem:
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The equality constraints given in the above equations arise from the preservation of both
component and total mass. The minimization problem is also subject to the above natural
inequality constraints that guarantee nonnegativity of contents and mole fractions for each of the
phases.

Suppose x* = (f (i),x(i))* is an extremum of G . An index set 4 is defined to include those
indices whose corresponding inequality constraint belongs to the active set of constraints at x *.

Recall that a local constrained extremum x * coincides with an unconstrained critical point of
the following Lagrangian, where A.,7,,7,,7, are the Lagrange multipliers corresponding to the
equality and inequality constraints introduced above:
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Here, we may use the theory on the complementarity property of the constraints and the
Lagrange multipliers so that only active constraints at the extremum point need to be considered.

Notice, however, that if an inequality constraint given in (1) becomes active, the total content for
some phases becomes zero, which implies that there are phases that do not take part in the



equilibrium. If these phases are known at the beginning, we can discard them and therefore
reduce the problem dimension. However, it is sometimes difficult to determine which phases
would form an equilibrium a priori, so a generalized approach is preferred.

We can, however, make the computation more efficient by monitoring the phase contents in the
process of optimization and eliminate those phases whose contents become insignificant. The
issue with this approach is that a phase content may accidentally become very small in the course
of the numerical procedure, so discarding a phase completely without allowing it to reappear
may lead to unwanted consequences. The usual tactic is to assign a small tolerance value £ > 0
to all phases whose contents are lower than ¢ during the equilibrium calculation. This assures
that all phases have equal chances of contributing to the equilibrium state, at the same time
making all inequality constraints inactive. In other words, we arrive at the following problem:
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The well known Karush-Kuhn-Tucker theorem for optimization problems [1] asserts that at the
critical point, the following set of first order conditions is met:
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where A.,77, 20 at x* and constraint equations in (1) are satisfied. We can now solve for 7,
from the second equation and substitute into the first one to get:
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for all i=1,...,n. Notice that the expression at the right hand side is the full derivative of the
Gibbs energy G (( fi )k:h_wn)= OG0 (x(i)) with respect to contents f; of the k-th component

in the i-th phase. In other words, making a change of variables back from molar quantities to



f., we conclude that for given temperature, pressure and overall composition, the minimum of
the objective function satisfies the following equations:
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where 1. =G /6f! . These equations are called Gibbs equilibrium conditions, which imply
that the value of the chemical potential for each component % is the same in all phases i =1,...n.

Furthermore, from the first equation in (4), we get that G* (x(i))—G(j) (x”)): 77T(x“) —x(”).
Coupled with (6), this implies the common tangent hyper-plane property in the G-x space with

the Lagrange multiplier 77 being the normal to the plane. Such a property is well known for the
phase diagram calculation.

It should be mentioned that these equations provide only necessary conditions. In order to
guarantee that the solution found at this step is indeed a minimizer, one should verify that

w' (V2L)w> 0 at x* for all limiting directions w of a feasible sequence. Notice that at x *,
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Here, e denotes the column vector with all components being equal to 1. We may write any
feasible direction as w' = (w],w})" and then make it adhere to the space of constraints (see [1]),

which in this case leads to w|" e = 0. Thus, we get
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It follows that the solution x* of the unconstrained problem (3) is a local minimum of the total
Gibbs energy of the system provided that the Hessian of the mixing energy is positive definite at
x*, otherwise it is possible that the point at hand is a maximum or a saddle. This observation
explains why the regions of positive concavity are so important for the process of finding good
initial guess that we are going to discuss in the following sections.

While the set of conditions provided by the KKT theorem is capable of identifying local
solutions of the problem (3), phase diagrams often require the knowledge of stable equilibria of
the system and hence call for a more careful analysis of the minimizers of the total Gibbs energy.



As we have already noted, any local solution should satisfy the common tangent hyper-plane
property in the G-x space, whereas stable solutions would have to belong to the lower convex
hull determined by these points. In order to eliminate points belonging to the interior of the
convex hull at any stage of the algorithm, one can perform two kinds of tests. The first one,
referred to as a stability check, consists in determining whether a given phase possesses the
minimal energy among all phases considered at this point. The remaining coplanarity check
identifies whether there are solutions lying below the plane determined by a set of test points.
Clearly any subset of points on the boundary of the convex hull satisfies both of these tests, and
we’re going to exploit this fact later in designing our method for stable diagram construction.

Going back to equations (6), notice that they result in a system of nonlinear equations which
should be solved numerically. Hence the success of the whole task of calculating phase equilibria
depends on the effectiveness of the scheme chosen to solve the nonlinear system.

Technical implementations of the nonlinear solution procedure differ from algorithm to
algorithm. The two most popular ones rely on the Newton-Raphson and the simplex methods for
iterative solution of the system (6). All of the CALPHAD-type software tools use methods like
the two-step method of Hillert [2, 3, 4] or the one step method of Lukas et al. [5] to minimize the
Gibbs energy. Typical drawbacks of these strategies include the use of prior knowledge in
providing suitable starting points and the possibility of divergence or convergence to metastable
minima.

Other methods were proposed that attempt to get a direct solution to the minimization problem
(1) either by constructing phase field boundaries or determining the minimum free energy
surface directly [6]. These algorithms do not suffer from stability issues as much as the iterative
methods mentioned above, but face problems with higher computational costs and the possible
loss of information due to limited resolution.

We will focus our attention on improving the iterative solution adopted in the packages of the
Thermocalc family. In doing so, we are going to follow the line of direct methods by recognizing
the importance of geometrical information for the design of an efficient minimization scheme.

2.2 Geometrical considerations

As shown above, the procedure of finding solution to the minimization problem described here,
from the geometric perspective, is nothing but a common tangent hyper-plane construction for
the equilibrium phase surfaces in the G —x space. Indeed, to give a more detailed illustration, let
us consider the binary 2-phase case as an example. From the conservation of phase mass
condition we have
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Hence, the minimization problem can be written as
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By means of the Lagrange multipliers x# and 77, we can represent the above system in form of
the following unconstrained minimization problem:
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At an equilibrium, the partial derivatives of the Lagrangian with respect to (f, X) become zero:
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It follows that 7= GV (x") — ix” =GP (x®) — ix'® (similar derivation can be found e.g. in
[7]). Hence the solution should satisfy the following equations
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Geometrically, it is the common tangent line of Gibbs energy curves. Similar argument can be
carried out in higher dimensions.

With this observation in mind, we are now ready to discuss the problems associated with the
construction of phase diagrams using the existing algorithms and some improved techniques.

2.3 Existing algorithms and motivation

As mentioned earlier, the minimization procedures adopted in existing iterative-type software
have the following drawbacks:

e (stability) They either fail to converge or perhaps converge to some metastable equilibrium
when a starting point is taken too far from the desired minimizer.

e (user-dependence) The computer programs cannot independently determine the existence of
a miscibility gap, hence some prior knowledge of system properties is required.



Figure 1 demonstrates the problem in producing a correct phase diagram for a system with a
miscibility gap. The diagram in Figure 1(a) is the correct phase diagram of the Ca-Li-Na system
at 7 =900K produced by specifying the “set miscibility_ gap” option, while the wrong
diagram in Figure 1(b) is the result of calculations when this option is not provided by the user.

Mathematically speaking, a miscibility gap arises when the Gibbs energy of a phase exhibits
multiple minima. We need to design an algorithm capable of predicting system properties of this
kind from the initial data. Ultimately this algorithm may be used as a basis to automate phase
diagram calculation process as a whole.

The problem with miscibility gaps has been addressed before. A solution has been proposed by
Chen et al [8], [9], [10]. Their method relies on a discretization of composition axis in order to
represent solution phases by a set of stoichiometric compounds. It performs a series of tests to
reveal the pairs of points which can coexist in stable equilibrium. These tests include stability
checks (discarding points with higher energy values) and “coplanarity” checks, which test a pair
for stable 2-phase equilibrium. As soon as candidate pairs are identified, they are taken as initial
approximations for a consecutive minimization procedure, which is supposed to lead to the exact
solution. In a two-phase case with N stoichiometric compounds the coplanarity (colinearity)
condition holds, if

Yo X

for any of the compounds 4, B, , s=1,.N,s#1,j.(see [8])

This method generally gives a much better initial point for optimization, but at a higher
computational cost. Indeed, even in 2D, the coplanarity check performed for each of the
(N(N —1))/2 pairs of stoichiometric phases involves (N —2) calculations of the determinants

specified above. Since the numerator needs a total of 12 multiplications and 5 additions, while
the denominator is calculated after 2 multiplications and 1 addition, the total complexity for the

coplanarity check is of the order O(N (N-1)(N —2)):> O(N 3) operations, where N 1is the
number of points in the subdivision.

3. A new algorithm

Both of the aforementioned drawbacks have to do with the fact that Thermocalc does not possess
the ability to recognize and utilize the geometric properties of Gibbs energy curves. The method
of Chen et al described above takes into account system geometry, but limits its operation to
function values, while it is the derivative information that seems to provide the best insight into
the geometric structure of the object under study. Knowledge of the critical and inflection points
of a system is a helpful tool in designing an efficient minimization algorithm. This is the key idea
behind the new numerical scheme we are about to propose next, which overcomes the drawbacks



of the previously mentioned algorithms, at the same time giving comparable accuracy to the
solution.

3.1 Description of the algorithm

Since in general the Gibbs energy is represented by a nonlinear functional, the task of finding
precise locations of its critical points may be too arduous. It makes sense to either deal with
numerical derivatives instead, or to consider a reasonable approximation to the given functional.
Although we are going to follow the first approach when presenting the algorithms, it is worth
noting that in the binary case it is possible to use a polynomial least-squares fitting. We will
return to this point later in the discussion on the numerical characteristics of the algorithm.

3.1.1 Binary case

First, notice that the procedure of finding critical points becomes much more difficult with the
decrease of curvature values. Hence it is desirable to deal with functions that are not flat to begin
with. In practice, many complex systems exhibit this type of behavior, thus leading to numerous
problems and possible failures of computational software. Being aware of this fact, we use the
following idea. Since a linear transformation of the carrying axis does not change the relative
positions of minima for energy curves and does not significantly change their absolute locations,
we can tilt the axis and use the modified geometry to get an initial approximation for the
optimization procedure that is carried out later for the original configuration. The transformation
suitable for these purposes has the form: y,  (x)=M(y(x)—(y,1)—y,(0)x—y,(0)). The
constants here are chosen to make sure that the curve having the minimal value at the right end
(y, (x)) approaches zero on both sides. A scaling constant M is introduced to increase the

curvature (we use M =2 in the examples below). In Figure 2 we display such a transformation
for the Ca-Na system. The transformation described here is performed only once at the initial
stage of the construction so it does not increase the scheme complexity.

The main component of the algorithm to be proposed for a binary phase diagram construction is
the recursive procedure of finding positions of critical points. This procedure relies on the
adaptive refinement strategy and uses first and second order derivatives information to detect
possible miscibility gaps and identify local minima with a prescribed accuracy ¢ . The other user
defined parameters include the maximum number of refinements and the total number of axis
subdivisions at each step. All derivatives in the algorithms described below are computed
numerically by some finite difference approximation schemes.

Function minima = AdaptiveSearch(a,b, phase, iter)
Global parameters: N - the number of axis subdivisions,
& -tolerance, Niter - maximum number of allowed refinements
Input parameters: a, b — ends of the interval, phase — phase index, iter — iteration index
Output parameters: minima — positions of the minima for the energy of the phase
while (iter<=Niter)
(1) Sample N points a=x, <x, <...<Xy <Xy, =b.
(2) For (iter ==1) % finding concavity regions




(a) Calculate G"7"*(x,) for j=1,...,N.
(b) Locate inflection points by finding indices {s|1 <s < N} such that
G " (Phase) (xs) . G (Phase) (x.,)<0.
(c) Identify interval(s) for refinement by counting inflection points.
If no inflection points found, put &=1, a(1) = a, b(1) =b, endif.
If one inflection point x, found and G""***(x )> 0, put k=1, a(1) = a, b(1) =x,, endif
If one inflection point x, found and G"”**“(x,) <0, put k=1, a(1) = x_, b(1) =b, endif
If two inflection points x_,x _found, put k=2, a(l)=a, b(1) =x, , a(2)= x_, b(2)=b, endif

(d) Perform recursive search on each of the identified intervals (a(j),b(j)):

s+1

minima(j) = AdaptiveSearch(a(j),b(j), phase,2)
(3) For (iter > 1) % recursive search procedure
(a) Calculate G'7"*(x,), j=1,...,N .

(b) Find s = argmin G'""* (x;)

j=1,..,N
(¢) If (G (x,) < &) or (iter == Niter) % met stopping criteria
minima= x, return minima
else Y%recursive refinement
For § =(b—a)/(2N) do
minima = AdaptiveSearch(x, —,x + 0, phase,iter +1)
end if

end while
return minima

In simple words, the method attempts to find approximate locations of all possible minima of the
energy functional and take them as starting points for the subsequent minimization procedure.
Note that since there are at least one and at most two minima for any unordered phase under
consideration, the algorithm will refine the grid as long as it cannot detect any of them. As with
any discrete numerical approximation, there may still be a chance of missing a minimum. If after
a sufficient number of refinements, critical points are still not found, the algorithm resorts to
taking points with the lowest first derivative values as starting points for the later optimization.
However, such situations are very rare in practice and are unlikely to cause troubles for most
energy functionals due to the adaptive refinement strategy described above. The detection of a
miscibility gap is straightforward due to availability of second derivative information.

It has to be noted that, in the 2D case, it is possible to avoid explicit calculations of the
derivatives by making use of polynomial (in this case, quadratic) approximation. This approach
has the same order of complexity as the method described above, but loses effectiveness when
the dimension of the problem is increased. For the sake of generality we will use direct
differentiation in all algorithms presented in this paper.

We now are ready to present the algorithm of calculating the stable binary 2-phase equilibria.
First let us introduce a couple of auxiliary structures.




The matrix A(1:ind,l:4) is used to record stability regions after the first sweep. Its first and

second columns represent the coordinates of the left and right ends of the stability regions
respectively, while the indices of the phases having lowest energy at those ends are recorded in
the third and fourth columns.

Matrix C contains all the points that are obtained as suitable candidates for starting positions
after the second sweep. The coordinate(s) of these points is recorded in the first (or first two in
the ternary case) column(s) and the index of the corresponding phase goes into the last column of
this matrix. The operation of adding a new row to this matrix is denoted everywhere in the text
by the arrow sign “<«”. With these notations, the stability region calculation procedure is given
as follows.

Function [ 4,ind ] = StabilityRegions(a,b,N,K)
Input parameters: a,b — ends of the interval. N — number of grid points
K - number of phases present
Output parameters: 4 — array recording stability regions information
ind — total number of stability regions in array 4
1) Subdivide domain ¥ =[a,b] into N —1 subdomains V, = [xj X0 ]
a=x,<x,<..<xy=b
2) Initialize ind =1, A(1,1) = a, A1,2)=a, A1,3) =1, A(1,4) =1;
For j=2,.,N—1do
Fori=1,...K do
(a) Calculate G (x;)
(b) Find the phase with lowest energy among calculated energy values at x; and x,,:
G o = 151G () < GV (x,), Vi< s}; 00 = 151G (%) < GV (x,,,), Vi < s
©) £ 0, =0, Alind2)=x,,A(ind 4)=0c % extend old stability region
else % start new stability region
A(ind 2)=x,, A(ind 4) =0 ; .,
ind =ind +1; A(ind,l)=x,,A(ind 3)=0
end if
end for;

end for
return [A4, ind]
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The algorithm for constructing binary phase diagram with K phases can be summarized as
follows:

Algorithm 1. Binary diagram construction
1) Fix N — the number of grid points in major axis subdivision,
& -tolerance, Niter - maximum number of allowed refinements
2) Do [A,ind] = StabilityRegions(0,1,2N,K) % Identify stability regions
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3) Calculate starting points for optimization
For i=1,...,ind , do
phase, = A(i,3), phase, = A(i,4)

If (phase, # phase,) % add points at the boundaries of stability regions
C « (A(,)), phase,) and C « (A(i,2), phase,);
else % find minima inside each stability region

minima = AdaptiveSearch(A(i,1), A(i,2), phase, 1)
C < (minima, phase,)
end if
end for
4) Perform coplanarity checks to get the convex hull of points in C
5) Carry out optimization for all remaining pairs of points, check result for consistency
6) Construct phase diagram using solution obtained in step 5.

Essentially, the method first detects the stability regions of the diagram, i.e. identifies which
phase has the lowest energy in each of the intervals formed by the intersection points (see Figure
3). Then it proceeds to examine each of the intervals separately, identifying extrema and possibly
other points (at most two per each region) that would serve as candidate ends of the common
tangents between curves. As soon as all such points are found, a coplanarity check removes all
points that could possibly appear inside the convex hull. At this stage, an exact (or more
precisely, a good numerical) solution is obtained by solving the nonlinear optimization problem
described earlier. To ensure the most reliable results, the solution is further checked for
consistency with one additional coplanarity check.

Notice that, in general, it is not possible to provide a good initial guess by only considering
critical points of the energy curves. An example of such a situation is shown in Figure 4.
Although the minima of both parabolas can be easily detected by the adaptive scheme described
above, only one of them provides a suitable initial guess for the optimization procedure. In this
case it is necessary to pay attention to the appropriate endpoint of the stability region, as
explained in the step 3(a) of the algorithm.

3.1.2 Ternary case

In two and higher dimensions, due to changes in topological properties comparing to the 1D
case, our algorithm needs to be modified accordingly in order to keep the calculation efficient.
The first issue is the difficulty of working with curvilinear boundaries. If we want to identify the
stability regions like we did in the binary case, we are up for a complicated task of working with
unordered sets of data with various possible intersections. Instead of following this approach, we
first identify critical point locations for all phases and then perform the coplanarity checks. This
reduces the overall complexity, but leaves the necessity of adding boundary points to the set of
candidate starting positions.

Another observation that has to be made is that the derivative calculation can hardly be avoided

in dimensions higher than two, hence the scheme relies on the numerical differentiation, which
calls for a good meshing approach. Some of the possible sampling strategies will be discussed in
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section 3.3. Here we only mention the importance of data ordering for the successful
implementation of the general algorithm to be presented.

The recursive procedure of finding the critical points in the ternary case is as follows.

Function minima = AdaptiveSearch2 D(V , phase, iter)
Global parameters: N - the number of axis subdivisions, & - tolerance,
Niter - maximum number of allowed refinements
Input parameters: V — given domain, phase — phase index, iter — iteration index
Output parameters: minima — positions of the minima for the energy of the phase
while (iter<=Niter)
(1) Sample N points x; =(x,(1),x;(2)),j=1,...,N on V.
(2) For (iter ==1) % finding concavity regions
(a) Calculate G"""= (x;) for j=1...,N
(b) Find regions of positive concavity by identifying the sets ¥, such that G"”**“ (x)> 0 for
any x in V. If there is only one such set, put V' =V,
(c) Perform recursive search on each of the identified regions V;:
minima(i) = AdaptiveSearch2D(V,, phase,2))
(3) For (iter > 1) % recursive search procedure
(a) Calculate G’ (x;), j=L...,N

(b) Find s = argmin G"""* (x )

j=1,...N
(c) If (G'""9(x,) < &) or (iter == Niter) % met stopping criteria
minima= x, return minima
else
For 6 = diam(V) /(2\/N) and V, =[x, (1)—0,x,(1)+0]x[x,(2)-I,x,(2)+ ]
do minima = AdaptiveSearch2D(V_, phase,iter +1) %apply recursive refinement
end if
end while

return minima

Below we give the details of the algorithm for computing stable 2-phase equilibia in ternary
systems with a total of K phases. ZPF stands for the Zero Phase Fraction method, traditionally
used to trace phase boundaries (see for example [10]).

Algorithm 2. Ternary diagram construction
1) Fix original domain as V' ={(x,y)|x+ y <1}, N — the number of grid points in major axis

subdivision, & - tolerance, Niter - maximum number of allowed refinements
2) For phase=1,...,K do
(a) minima = AdaptiveSearch2D(V , phase,l)
C « (minima, phase)
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(b) Sample N points bdrypts on the boundary of domain V,
C < (bdrypts, phase)
end
3) Perform coplanarity checks to get the convex hull of points in C
4) Carry out optimization for all remaining pairs of points, check result for consistency
5) Use ZPF to track the boundaries and complete the phase diagram construction.

Similar scheme can be constructed in higher dimensions. Notice that the algorithm is capable of
predicting multiple minima using the second order derivative information, which makes it
applicable even in the difficult multiphase miscibility gap situations.

The overall performance of this scheme is mostly influenced by the two major factors: the
accuracy in the detection of the critical points and the effectiveness of the chosen sampling
scheme. In the later sections, we discuss the theoretical and practical advantages of the new
method, in comparison with other existing techniques.

3.2 Computational complexity estimate for the binary case

In this section we will compare complexity of our algorithm to other existing schemes from the
point of view of required resources and computational workload. First, let # be the smallest
mesh size required in order to identify points with the lowest energy on any one of stability
regions with a given accuracy ¢ . By measuring the total number of grid points needed to reach
this mesh size, we claim that, due to the adaptivity, our proposed scheme requires significantly
less subdivisions than other comparable methods.

Indeed, suppose the number of levels required for the adaptive scheme to reach this mesh size is
denoted as L . Since after a refinement stage, each interval is either subdivided into N
subintervals (there are at most two such intervals) or left unchanged, the mesh size at each level
is reduced by a factor of 1/N and the total number of intervals is increased by at most 2(N —1).

Hence 7 =1/N* or L=1log, 1/h. It follows also that the total number of intervals needed to

reach a mesh size h is N, = N+2(N-1)-L=N+(2(N -1)Inl/h)/In N . Note that N is taken
to be a constant independent of 4 (we use a fixed N =10 in the numerical experiments). A
comparable full uniform grid scheme (like the one in the Chen et al algorithm) should have
approximately N =1/h grid points to yield the same accuracy as the scheme proposed above.
In other words, N, =O(In N} ), which implies a significant reduction in the number of axis
subdivisions comparing to the uniform scheme.

Second, let us assess the amount of work required by each of the algorithms for finding a starting
point for the two-phase equilibrium calculation prior to the optimization based on the same mesh
size h. We again can claim an advantage of our scheme in comparison with the approach of
Chen et al due to a significant reduction in the number of required coplanarity checks. Below is
the step by step analysis of the computational complexity that verifies to our claim.

From the point of view of complexity, Algorithm 1 as given in section 3.1.1 can be divided into
the following major stages:
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i) [A4,ind]=StabilityRegions(0,1,2N,K) — stability region calculation
To compare energy values for all K phases at each grid point, we need 2N - K operations,
which is the total complexity for this stage. Notice that this estimate has no dependence on 4.
ii) Starting points calculation
AdaptiveSearch procedure is performed on each of the ind stability regions where the total
number of stability regions ind is a constant independent of. 4. At the first sweep, we detect
inflection points by calculating second derivatives at each grid point: a total of 3N function
evaluations if a 3-point stencil is used in the derivative calculation. At the second sweep, N
first derivatives are calculated on at most 2 subintervals, which adds up to a total of 4N
function evaluations if a 2-point stencil is used in derivative calculation. If the critical point
was detected with predefined accuracy ¢ after L = (Inl/%)/In N adaptive grid refinements,
the first derivative calculation had to be repeated (Inl/4)/In N times. It follows that the
overall complexity of this stage is given by 3N -ind + 4N -ind -(In1/h)/In N = O(In1/h).
ii1) Coplanarity checks
At the last stage of the Algorithm 1, two coplanarity checks are performed for all selected
pairs. A coplanarity check for p selected points requires a calculation of a total of

0.5p(p—1)2+12(p —2)) operations (determinant calculations for each of the 0.5p(p —1)
pairs). The total complexity of this stage is thus P = p(p —1)(2 +12(p — 2)). Since the total
number of selected pairs is specific to the system configuration and does not depend on the
refinements, the final stage does not raise the overall algorithm complexity in terms of 1/4.

It follows from the above estimation that, for fixed parameter N without further refinement, our
scheme has a total complexity of O(In1/%).

Likewise we can calculate the number of operations required for the Chen et al algorithm of
comparable accuracy (N; =1/A is the total number of subdivisions required). As we have seen

in Section 2.3, it can be roughly estimated as

KN}, +0.5-NL(N}, =1)(2+12(N} —2)) = K/h+ 1/ h)(1/h=1)2+12(/h - 2)) = O(1/ 1" ).
Here K - N} operations are spent on stability checks, while the coplanarity check for each of the
pairs takes up the rest of the complexity. It is obvious that for small # our complexity
O(ln 1/ h) is significantly lower than the 0(1/ n’ ) complexity of the Chen et al algorithm.

As an illustration, let us fix N =10, ind = 2K (the maximum number of stability regions in 2d)
and p =2-ind . The graph in Figure 5 illustrates the behavior of calculated complexity estimates

for the uniform Chen et al type scheme versus the new algorithm for the K =2 (two phase) case.
It is clear that for a mesh size smaller than a critical value (4 =~ 0.05 for our example), the

adaptive scheme proposed above outperforms the uniform grid algorithm, and its advantage
becomes even more visible as the mesh size required to detect the lowest energy decreases.

3.3 Generalization to higher dimensions and sampling schemes

In light of the results derived in the previous section, the new adaptive technique possesses an
advantage over other schemes in that it needs significantly less points and operations to achieve
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the required accuracy. Still, such a scheme also becomes computationally demanding when the
dimension of the system starts to grow. However, there are some ideas that can be entertained in
order to reduce the complexity of the method in higher dimensions.

For instance, the Hammersley or Halton quasi-random sequences can help reduce the complexity
while allowing for critical point detection with the same accuracy in dimensions up to s =38
(degradation and correlation can occur in higher dimensions). These sequences are low-
discrepancy point sets in a sense that the discrepancy (deviation from the uniform distribution) of

an N point sequence in s -dimensional case satisfies D, = O(N ' (log N)*™") (see [11]). The

Halton sequence is superior to that of the Hammersley in that it builds upon the previous sets as
the number of points increases. We can hope that the use of these sequences will allow to detect
critical points with the accuracy similar to a uniform approach while reducing the overall
computational cost.

The difficulty of using quasi-random approach with any adaptive refinement strategy is the need
for a careful point ordering. One should also think about the possible loss of accuracy in
derivative calculations done on such a mesh. The last obstacle can be avoided by introducing a
finer regular grid around each point for finite difference calculations. For sufficiently small grid
size h, the error introduced by such types of calculation is at least of the order of O(%) and often

O(h*) for the first and second order derivatives depending on the difference scheme [12]. The

overall complexity will not be affected if a fixed number of auxiliary points is used for all grid
points. To overcome the ordering difficulty, one can reorder the points independently on each
subset after each refinement.

The most attractive property of quasi-random sequences is that they dramatically reduce the error
bounds for integration [11]. This gives us reason to believe that the quasi-random construction
can potentially work very well in our case, especially if the derivative information is used
adaptively in the process of mesh construction.

4. Results for binary and ternary systems

All examples given below rely on the following form of the Gibbs energy functional, where the
excess Gibbs energy is expressed in the form of Redlich-Kister polynomial:

Gq’ ZXOGG’ +RTZX Inx, +* G‘D

XSG(D ZX X . ZL

J>i

Performance estimates have been done with the Matlab 6.5 implementation of the algorithm on a
Pentium 4 2.4Ghz machine with 512MB RAM Figures 6(a) through 8(a) show phase diagrams
computed using this implementation of the new method, while Figures 6(a) through 7(b) are
reproduced from [13] and are created using Thermocalc software with the aid of a priori
knowledge of the system.

4.1 Binary examples
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First, we consider a Ca-Li-Na system. Figure 6(a) represents its binary Li-Na projection for
T =900K , where the miscibility gap occurs. As shown in Figure 1, the phase diagram
calculation done by the Thermocalc software independently produces unacceptable results when
the miscibility gap is not specified manually. The method described above detects the existing
liquid and bcc miscibility gaps and correctly predicts the corresponding phase diagram with
absolutely no additional input from the user.

In the Matlab 6.5 implementation, the complete Li-Na phase diagram construction with the

temperature step size dt =1° K took about 232 sec. Another example is the Ca-Na projection
calculated at 7 =900K . Here all three phases (liquid, bee, fce) form stable equilibria at different

temperatures and a liquid miscibility gap occurs at temperatures higher than1000° K . It took 261
sec to produce the complete diagram which is given in Figure 7(a) below.

4.2 Ternary examples

Figure 8 shows the Gibbs energy of the ternary Ca-Li-Na system at7 = 900K . The straight line
indicates the common tangent found by the new algorithm for the miscibility gap, which
remained undetected during unassisted Thermocalc run producing incorrect diagram in Figure
I(b). The outline of the procedure used to compute ternary diagrams is as follows. The
preprocessing module was designed that is capable of handling arbitrary ternary systems from
given database specifications and can be integrated directly into the Thermocalc. Steps 1 and 2 of
the Algorithm 2 discussed in section 3.1.2 are performed in this preprocessing module prior to
the optimization. Results of the preprocessing calculation are then automatically recorded in the
corresponding macro file that can be further fed into Thermocalc to produce the complete
diagram as the one shown in Figure 1(a). The timing overhead of the preprocessing routine did
not exceed 5 sec for any of the above fixed temperature calculations.

5. Conclusions

In this paper, we propose a new scheme to optimize the phase diagram construction algorithm
adopted in Thermocalc. The new algorithm possesses advantages over existing methods in terms
of the convergence speed, the computational complexity and the robustness. It can be used to
automate the calculation of phase equilibria in complicated systems. Numerical results for binary
and ternary systems show good agreement of automatic calculations with prior results.

As discussed earlier for the higher space dimensions, the new approach carries an increased
computational load, so a tradeoff must be made between the accuracy of the solution and the
complexity of the scheme. Possible higher dimensional solutions including better sampling
techniques discussed above are the main focus of our current research and will be discussed in
future publications.
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set miscibility gap option; (b) diagram produced withno set miscibility gap
option
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Figure 2: Linear axis transformation performed at first stage of the algorithm.
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Figure 3: Stability regions for a binary 4-phase system and corresponding starting

values for the optimization procedure .
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Figure 6: Li-Na phase diagrams calculated by the new (a) and Thermocalc (b) methods.
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Miscibility gap in Ca-Li-Na system at T=900K
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Figure 8. Gibbs energy for the Ca-Li-Na system showing miscibility gap.
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