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1. Introduction 

 
Phase diagrams are visual representations of the equilibrium phases in a materia
temperature, pressure an

l as a function of 
d concentrations of the constituent components and are frequently used 

al experimental 
 phase equilibria 
y adjusting the 
ny minimization 
f many possible 

ackages lack the ability to automatically determine system properties 
from initial data and can produce metastable equilibria instead of stable ones or simply diverge if 
the initial guess is not good enough. Several algorithms were proposed to automate the process 
of finding suitable starting positions, all of which carry an increased computational cost. In this 
paper we make an attempt to improve on the existing strategies for automating phase diagram 
calculations by introducing a novel reduced complexity algorithm based on adaptive critical 
point detection approach. The main advantage of the new scheme lies in its ability to effectively 
reduce the total number of trial calculations by recognizing the importance of geometry specific 
properties of the Gibbs energies.  
 

as basic blueprints for materials research and development. Under typic
conditions of constant pressure and temperature and a closed system, calculated
are obtained via minimization of the total Gibbs energy of a system b
compositions and amounts of all individual phases in the system. As in a
procedure, the starting values play an important role due to the existence o
metastable states. 
 
Many existing software p
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We start with an introduction to the necessary theoretical background and a s
existing techniques, which are succeeded by the detailed description of the new a
as its generalizations in section 3. Section 4 contains the results o

hort overview of 
lgorithm as well 

f several numerical calculations 
for binary and t ade in section 5. 

 
2. Theoretical aspects of phase diagram calculation 

 

ith a total of 
ponents.  total conte e system and 

th compo t in the i-th pha s of the ph

i

ernary systems. Some concluding remarks are m

2.1. Mathematical model 
 
Let us fix both the temperature and the pressure as independent system variables w
one mole of com  Let kf  be the nt of the k-th component in th
the content of the k- se and f  the number of mole
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 analysis of a 

i )(i   and G is the corresponding molar Gibbs 
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the following Gibbs energy minimization problem: 
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indices whose corresponding inequality constraint belongs to the active set of con
 
Recall that a local constrained extremum *x  coincides with an unconstrained
the following Lagrangian, where iτγηλ ,,,  are the Lagrange multipliers corr

. 

 critical point of 
esponding to the 

equality and inequality constraints introduced above: 

            .     (2) 

Here, we may use the theory on the complementarity property of the constraints and the 
Lagrange multipliers so that only active constraints at the extremum point need to be considered. 
Notice, however, that if an inequality constraint given in (1) becomes active, the total content for 
some phases becomes zero, which implies that there are phases that do not take part in the 
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equilibrium. If these phases are known at the beginning, we can discard the
reduce the problem dimension. However, it is sometimes d

m and therefore 
ifficult to determine which phases 

e contents in the 
significant. The 

ery all in the course 
g it to reappear 

lerance value 

would form an equilibrium a priori, so a generalized approach is preferred.  
 
We can, however, make the computation more efficient by monitoring the phas
process of optimization and eliminate those phases whose contents become in
issue with this approach is that a phase content may accidentally become v sm
of the numerical procedure, so discarding a phase completely without allowin
may lead to unwanted consequences. The usual tactic is to assign a small to 0>ε  
to all phases whose contents are lower than ε  during the equilibrium calculation. This assu
that all phases have equal chances of contributing to the equilibrium state, at the same time 
making all inequality constraints inactive. In other words, we arrive at the following problem: 
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for all . Notice that the expression at the right hand side is the full derivative of the 
Gibbs energ
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i
kf , we conclude that for given temperature, 

wT
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f
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pressure and overall composition, the minimum of 
the objective function satisfies the following equations:  
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lled Gibbs equilibrium conditions, which imply 
hases . 

e first equation in (4), we get that  . 

ll known for the 
phase diag  c

It should be mentioned that these equations provide only necessary conditions. In order to 
guarantee that the solution found at this step is indeed a minimizer, one should verify that 

 at  for all limiting directions  of a feasible sequence. Notice that at  , 

Coupled with (6), this implies the common tangent hyper-plane property in the
the Lagrange multiplier η  being the normal to the plane. Such a property is we

ram alculation. 
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It follows that the solution *x  of the unconstrained problem (3) is a local mini

                                                 

mum of the total 
Gibbs energy of the system provided that the Hessian of the mixing energy is positive definite at 

, otherwise it is possible that the point at hand is a maximum or a saddle. This observation 
s why the region e concavity are so important for the process of finding good 

initial guess that we are going to discuss in the following sections. 

ile the set of conditions provided by the KKT theorem is capable of identifying local 
solutions of the problem (3), phase diagrams often require the knowledge of stable equilibria of 
the system and hence call for a more careful analysis of the minimizers of the total Gibbs energy. 
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As we have already noted, any local solution should satisfy the common tan
property in the G-x space, whereas stable solutions would have to belong to t
hull determined by these points. In order to eliminate points belonging to th
convex hull at any stage of the algorithm, one can perform two kinds of test
referred to as a stability check, consists in determining whether a given pha
minimal energy among all phases considered at this point. The remaining c
identifies whether there are solutions lying below the plane determined by 

gent hyper-plane 
he lower convex 
e interior of the 
s. The first one, 
se possesses the 
oplanarity check 

a set of test points. 
f these tests, and 

Going back to equations (6), notice that they result in a system of nonlinear equations which 
 phase equilibria 
.  

m algorithm to 
plex methods for 

ve solution of the system (6). All of the CALPHAD-type software tools use methods like 
the two-step method of Hillert [2, 3, 4] or the one step method of Lukas et al. [5] to minimize the 

r knowledge in 
ce to metastable 

ization problem 
um free energy 

uch as the iterative 
methods mentioned above, but face problems with higher computational costs and the possible 
loss of information due 

 packages of the 
s by recognizing 
tion scheme.  

2.2 Geometrical considerations 
 

g solution to the minimization problem described here, 
from the geometric perspective, is nothing but a common tangent hyper-plane construction for 
the equilibrium phase surfaces in the 

Clearly any subset of points on the boundary of the convex hull satisfies both o
we’re going to exploit this fact later in designing our method for stable diagram construction.  

should be solved numerically. Hence the success of the whole task of calculating
depends on the effectiveness of the scheme chosen to solve the nonlinear system

Technical implementations of the nonlinear solution procedure differ fro
algorithm. The two most popular ones rely on the Newton-Raphson and the sim
iterati

Gibbs energy. Typical drawbacks of these strategies include the use of prio
providing suitable starting points and the possibility of divergence or convergen
minima. 

Other methods were proposed that attempt to get a direct solution to the minim
(1) either by constructing phase field boundaries or determining the minim
surface directly [6]. These algorithms do not suffer from stability issues as m

to limited resolution.  
 
We will focus our attention on improving the iterative solution adopted in the
Thermocalc family. In doing so, we are going to follow the line of direct method
the importance of geometrical information for the design of an efficient minimiza
 

xG −  

As shown above, the procedure of findin

space. Indeed, to give a more detailed illustration, let 
us consider the binary 2-phase case as an example. From the conservation of phase mass 
condition we have 

 . 

Hence, the minimization problem can be written as 
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Geometrically, it is the common tangent line of Gibbs energy curves. Similar argument can be 

ociated with the 
 techniques. 

 

As mentioned earlier, the minimization procedures adopted in existing iterative-type software 
have the following drawbacks: 
 
• (stability) They either fail to converge or perhaps converge to some metastable equilibrium 

when a starting point is taken too far from the desired minimizer. 
• (user-dependence) The computer programs cannot independently determine the existence of 

a miscibility gap, hence some prior knowledge of system properties is required. 
 

carried out in higher dimensions. 
 
With this observation in mind, we are now ready to discuss the problems ass
construction of phase diagrams using the existing algorithms and some improved
 

2.3 Existing algorithms and motivation
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Figure 1 demonstrates the problem in producing a correct phase diagram for 
ity gap. The diagram in Figure 1(a) is the correct phase diagram of the 

at 

a system with a 
miscibil Ca-Li-Na system 

KT 900=  produced by specifying the “ ” optioset_miscibility_gap n, while the wrong 
ed by the user. 

its 
sign an algorithm capable of predicting system properties of this 

 automate phase 

een proposed by 
 axis in order to 
series of tests to 
include stability 

ding points with higher energy values) and “coplanarity” checks, which test a pair 
for stable 2-phase equilibrium. As soon as candidate pairs are identified, they are taken as initial 
approximations for a consecutive minimization procedure, which is supposed to lead to the exact 
solution. In a two-phase case with

diagram in Figure 1(b) is the result of calculations when this option is not provid
 
Mathematically speaking, a miscibility gap arises when the Gibbs energy of a phase exhib
multiple minima. We need to de
kind from the initial data. Ultimately this algorithm may be used as a basis to
diagram calculation process as a whole. 
 
The problem with miscibility gaps has been addressed before. A solution has b
Chen et al [8], [9], [10]. Their method relies on a discretization of composition
represent solution phases by a set of stoichiometric compounds. It performs a 
reveal the pairs of points which can coexist in stable equilibrium. These tests 
checks (discar

 N  stoichiometric compounds the coplanarity (colinearity) 
condition holds, if 

,2

,2,2,2

,1,1

i

jis

js

jis

x

xxx
xx
GGG

,1 ix

0

,2

,1,1

>

j

ji

x
xx

 

for any of the compounds 
ss xx BA

,2,1
, jisNs ,,,...1 ≠= .(see [8]) 

 
This method generally gives a much better initial point for optimization, but at a higher 
computational cost. Indeed, even in 2D, the coplanarity check performed for each of the 

2))1(( −NN )2( −N

N

pairs of stoichi volves ometric hases inp  calculations of the determinants 
 additions, while 
mplexity for the 

specified above. Since the numerator needs a total of 12 multiplications and 5
the denominator is calculated after 2 multiplications and 1 addition, the total co
coplanarity check is of the order ( ) ( )3)2)(1( NONNNO ⇒−−  operations, 
number of points in the subdivision. 
 

3. A new algorithm 

where  is the 

 
Both of the aforementioned drawbacks have to do with the fact that Thermocalc does not possess 
the ability to recognize and utilize the geometric properties of Gibbs energy curves. The method 
of Chen et al described above takes into account system geometry, but limits its operation to 
function values, while it is the derivative information that seems to provide the best insight into 
the geometric structure of the object under study. Knowledge of the critical and inflection points 
of a system is a helpful tool in designing an efficient minimization algorithm. This is the key idea 
behind the new numerical scheme we are about to propose next, which overcomes the drawbacks 
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of the previously mentioned algorithms, at the same time giving comparable accuracy to the 
solution.  
 

e task of finding 
either deal with 

given functional. 
Although we are going to follow the first approach when presenting the algorithms, it is worth 
noting that in the binary case  use a polynomial least-squares fitting. We will 
return to this point later in the discussion on the numerical characteristics of the algorithm. 

ifficult with the 
 not flat to begin 
ing to numerous 

 fact, we use the 
nge the relative 

 solute locations, 
ximation for the 
e transformation 

3.1 Description of the algorithm 
 
Since in general the Gibbs energy is represented by a nonlinear functional, th
precise locations of its critical points may be too arduous. It makes sense to 
numerical derivatives instead, or to consider a reasonable approximation to the 

 it is possible to

 
3.1.1 Binary case 

 
First, notice that the procedure of finding critical points becomes much more d
decrease of curvature values. Hence it is desirable to deal with functions that are
with. In practice, many complex systems exhibit this type of behavior, thus lead
problems and possible failures of computational software. Being aware of this
following idea. Since a linear transformation of the carrying axis does not cha
positions of minima for energy curves and does not significantly change their ab
we can tilt the axis and use the modified geometry to get an initial appro
optimization procedure that is carried out later for the original configuration. Th
suitable for these purposes has the form: ()(new yMxy ))0())0()1(()( mmm yxyyx −−−=

 at the righ
 to increase
a transform

. The 
t end constants here are chosen to make sure that the curve having the minimal value

( )(xym ) approaches zero on both sides. A scaling constant M  is introduced
curvature (we use 2=M  in the examples below). In Figure 2 we display such 
for the Ca-Na system. The transformation described here is performed only o
stage of the construction so it does not increase the scheme complexity.  
 

ε

 the 
ation 

nce at the initial 

The main component of the algorithm to be proposed for a binary phase diagram construction is 
procedure of finding positions of critical points. This procedure relies on the 

ada ond order derivatives information to detect 
possible misci il ccuracy 

the recursive 

),,,( iterphasebaarchAdaptiveSe  

ptive refinement strategy and uses first and sec

N

b ity gaps and identify local minima with a prescribed a

 ε  - tolerance,  - maximum number of allowed refinements Niter

. The other user 
def al number of axis 

 below are computed 
a ome finite difference approximation schemes. 

Function minima =

ined parameters include the maximum number of refinements and the tot
subdivisions at each step. All derivatives in the algorithms described
numeric lly by s

N  points bxxxxa NN =<<<<= +110 K

 

)1( ==iter

Global parameters:  - the number of axis subdivisions, 

Input parameters:   a, b – ends of the interval, phase – phase index,  iter – iteration index 
Output parameters:   minima – positions of the minima for the energy of the phase 

while (iter<=Niter) 
(1) Sample . 
(2) For         % finding concavity regions 
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(a) Calculate )()(
j

phase xG ′′  for j ,1=
 }1|{ Nss ≤≤

N,K . 
(b by) Locate inflection points  finding indices  such that 
        0)()( 1 <′′⋅′′ +ss xGxG . )()( phasephase

(c) Identify interva (s) for refin nting inflection points  

))( phase
sx

l ement by cou .
              If no inflection points found, put k=1, ba(1) = a, b(1) = , endif. 

0) < , pu =1, a(1) = , b(1) =b, endif sx
If one inflection  sx  found and 0( >′′ sxG , pu =1, a(1) = a, 

 
2`

,s xx x
2sx

point t k b(1) = , endif 
If one inflection point sx  found and ()(′′ s

phase xG t k

))(),(( jbja
If two

)2,),(),(( phasejbjaarchAdaptiveSe=  

 inflection points found, put k=2, a(1)=a, b(1) = , a(2)= , b(2)=b, endif s 1s

)1( >iter

(d) Perform

)()e xG Nj =

 recursive search on each of the identified intervals : 
 minima(j)

(3) For          % recursive search procedure 
(a) ( phas′ ,,1 K

ε<′ )()(
s

phase x )( Niteriter ==

 Calculate ,  . j

)( phase

sx=

(b) Find )(minarg jxGs ′=
=

 
,,1 Nj K

( ) or c) If ( G     % met stopping criteria 
minima , return minima   

  else         %recursive refinement 
For )2()( Nab −=δ  do  
minima )1,,,( ++−= iterphasexxarchAdaptiveSe ss δδ  

end if 
end while 
return minima 
 
In simple words, the method attempts to find approximate locations of all possib
energy functional and take them as starting points for the subsequent minimization procedure. 
Note that since there are at least one and at most two minima for a

le minima of the 

ny unordered phase under 
consideration, the algorithm will refine the grid as long as it cannot detect any of them. As with 

inimum. If after 
orithm resorts to 
ter optimization. 

actice and are unlikely to cause troubles for most 
energy functionals due to the adaptive refinement strategy described above. The detection of a 

It has to be noted that, in the 2D case, it is possible to avoid explicit calculations of the 
derivatives by making use of polynomial (in this case, quadratic) approximation. This approach 
has the same order of complexity as the method described above, but loses effectiveness when 
the dimension of the problem is increased. For the sake of generality we will use direct 
differentiation in all algorithms presented in this paper.  
 
We now are ready to present the algorithm of calculating the stable binary 2-phase equilibria. 
First let us introduce a couple of auxiliary structures.  

any discrete numerical approximation, there may still be a chance of missing a m
a sufficient number of refinements, critical points are still not found, the alg
taking points with the lowest first derivative values as starting points for the la
However, such situations are very rare in pr

miscibility gap is straightforward due to availability of second derivative information. 
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The matrix )4:1,:1( indA  is used to record stability regions after the first swe
second columns represent the coordinates of the left and right ends of the 

ep. Its first and 
stability regions 

respectively, while the indices of the phases having lowest energy at those ends are recorded in 
h

tarting positions 
t (or first two in 

 case) column(s) and the index of the corresponding phase goes into the last column of 
this matrix. The operation of adding a new row to this matrix is denoted everywhere in the text 

he stability region calculation procedure is given 
as f
 
Fun ta

the t ird and fourth columns. 
 
Matrix C  contains all the points that are obtained as suitable candidates for s
after the second sweep. The coordinate(s) of these points is recorded in the firs
the ternary

by the arrow sign “ ← ”. With these notations, t
ollows. 

c =] bilityRegions(a,b,N,K)  tion ,[ indA S
Input parame

[ ]baV ,= 1−N  subdomains [ ]1, += jjj xxV

ters:         a,b – ends of the interval. N – number of grid points 
         K  - number of phases present 
 Outp  p

1

ut arameters:  A – array recording stability regions information 
      ind – total number of stability regions in array A    

For 1,...,2 −= Nj

1)  ubdivid main  into S e do

i K,1=

, 
  xa = K1

)( jxG

bxx N =<<< 2  
2) Initialize ;)4,1(,1)3,1(,)2,1(,)1,1(,1 ===== AAaAaAind  

jx 1+jx

 do 
  K

 rightjleftj ,, σσ = , rightjj indAxindA ,)4,(,)2,( σ==  

For  do 
(a) Calcula )(i   te 
(b) Fi e

;1+= indind  rightjj indAxindA ,)3,(,)1,( σ==  

nd the phas  with lowest energy among calculated energy values at  and : 

{ }sixGxGs j
i

j
s <∀<= ),()(| )()( { }sixGxGs j

i
j

s
rightj <∀<= ++ ),()(| 1

)(
1

)(
,σ; leftj ,σ  

   (c)  If % extend old stability region 
     else        % start new stability region 

rightjj indAxindA ,)4,(,)2,( σ==  

K

              
      end if 
end for;  
end fo

ε  - tolerance,  - maximum number of allowed refinements Niter

r 
return [A, ind] 

=],[ indA

 
The algorithm for constructing binary phase diagram with  phases can be summarized as 
follows: 
 

Algorithm 1. Binary diagram construction 
1) Fix N – the number of grid points in major axis subdivision, 

2) Do StabilityRegions(0,1,2N,K)    % Identify stability regions 
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3) Calculate star ints for optimization ting po
indi ,...,1=For  ,  do 

) )4,(iA  

21 phasephase ≠
3,(1 iAphase = phase =, 2

)  
)),1,(( 1phaseiA← );),,(( 2phaseiAC ←  

 If (     % add points at the boundaries of stability regions 
  and C 2

)1,),2,(),1,(( 1phaseiAiAarchAdaptiveSe=  
 else       % find minima inside each stability region    

minima  
 ←C (minima, 1phase ) 

C  

 end if 
end for 

4) Perform coplanarity checks to get the convex hull of points in 
5) Carry out optimization for all remaining pairs of points, check result for consistency 
6) Construct phase diagram using solution obtained in step 5. 
 
Essentially, the method first detects the stability regions of the diagram, i.e. 
phase has the lowest energy in each of the intervals formed by the intersection p
3). Then it proceeds to examine each of the intervals separately, identifying extre
other points (at most two per each regio

identifies which 
oints (see Figure 
ma and possibly 

n) that would serve as candidate ends of the common 
tangents between curves. As soon as all such points are found, a coplanarity check removes all 

 exact (or more 
ization problem 

her checked for 

 
Notice that, in general, it is not possible to provide a good initial guess by only considering 
critical points of the energy ple of such a situation is shown in Figure 4. 

cheme described 
rocedure. In this 
bility region, as 

In two and higher dimensions, due to changes in topological properties comparing to the 1D 
ulation efficient. 
nt to identify the 
 of working with 

unordered sets of data with various possible intersections. Instead of following this approach, we 
first identify critical point locations for all phases and then perform the coplanarity checks. This 
reduces the overall complexity, but leaves the necessity of adding boundary points to the set of 
candidate starting positions.  
 
Another observation that has to be made is that the derivative calculation can hardly be avoided 
in dimensions higher than two, hence the scheme relies on the numerical differentiation, which 
calls for a good meshing approach. Some of the possible sampling strategies will be discussed in 

points that could possibly appear inside the convex hull. At this stage, an
precisely, a good numerical) solution is obtained by solving the nonlinear optim
described earlier. To ensure the most reliable results, the solution is furt
consistency with one additional coplanarity check.  

 curves. An exam
Although the minima of both parabolas can be easily detected by the adaptive s
above, only one of them provides a suitable initial guess for the optimization p
case it is necessary to pay attention to the appropriate endpoint of the sta
explained in the step 3(a) of the algorithm. 
 

3.1.2 Ternary case 
 

case, our algorithm needs to be modified accordingly in order to keep the calc
The first issue is the difficulty of working with curvilinear boundaries. If we wa
stability regions like we did in the binary case, we are up for a complicated task
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section 3.3. Here we only mention the importance of data ordering for the successful 
implementation of the general algorithm to be presented. 

procedure of finding the critical points in the ternary case is as follows. 

Function minima

 
The recursive 
 

 = ),,(2 iterphaseVDarchAdaptiveSe  
Global parameters: N - the number of axis subdivisions, ε  - tolerance,  

Niter  - maximum number of allowed refinements 
Inpu  parame ,  ph se

N  points Njxxx ,...,1)),2(),1(( ==  on V

t ters:   V – given domain a  – phase index,  iter – iteration index 
O arameters: minima – positions of the minima for the energy of the phase

 r

utput p  
while (iter<=Niter) 
(1) Sample jjj

iV 0)()( >′′ xG phase

. 
(2) For )1( ==ite      

 i 1

   % finding concavity regions 
(a) Calculate )()(

j
phase xG ′′  for Nj ,,1 K=  

iV

(b) Find regions of positive concavity by identifying the sets  such that  for 
   x  in V . If there is only one such set, put VV =  

)1>iter

   any
(c) Perform recursive search on each of the identified regions : 

minima(i) ) )2,,(2 phaseVDarchAdaptiveSe i=
(3       e search procedure ) For (   % recursiv

ε<′ )()(
s

phase xG )( Niteriter ==

(a) Calculate ,   )( jxG ′ Nj ,,1 K=)( phase

sx=

(b) Find ()ase

j
x

])2(, δδ +sx
)1,,(2 +iterphaseVD s   %apply recursive refinem

)minarg (

,,1
j

ph

N
Gs ′=

= K

 

(c)  If ( ) or     % met stopping criteria 
  minima , return minima 

  else   
              For )2/()( NVdiam=δ  and )2([])1(,)1([ δδ −×+−= ssss xxxV   
              do minima = archAdaptiveSe ent 

   end if 
end while 
return minima 

}1|),{( ≤+= yxyxV
ε  - tolerance, ber of allowed refinements Niter  - maximum num

 

Kphase ,...,1=

Below we give the details of the algorithm for computing stable 2-phase equilibia in ternary 
sys s wtem ith a total of K

←C

 phases. ZPF stands for the Zero Phase Fraction method, traditionally 
used to trace phase boundaries (see for example [10]). 
  

Algorithm 2. Ternary diagram construction 
1) Fix original domain as , N – the number of grid points in major axis 
subdivision, 
2) For  do 

(a) minima )1,,(2 phaseVDarchAdaptiveSe=  
     (minima, phase) 
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(b) Sample N points bdrypts on the boundary of domain V,  
     ),( phasebdryptsC ←  

end 
3) Perform coplanarity checks to get the convex hull of points in C  
4) Carry out optimization for all remaining pairs of points, check result for consistency 
5) Use ZPF to track the boundaries and complete the phase diagram construction. 
 
Similar scheme can be constructed in higher dimensions. Notice that the algorithm is capable of 

which makes it 

 mostly influenced by the two major factors: the 
accuracy in veness of the chosen sampling 
scheme. In the later sections, we discuss the theoretical and practical advantages of the new 

ity of our algorithm to other existing schemes from the 
point of view of required resources and computational workload. First, let  be the smallest 

one of stability 

predicting multiple minima using the second order derivative information, 
applicable even in the difficult multiphase miscibility gap situations. 
  
The overall performance of this scheme is

 the detection of the critical points and the effecti

method, in comparison with other existing techniques.  
 

3.2 Computational complexity estimate for the binary case 
 
In this section we will compare complex

h
 
 

mesh size required in order to identify points with the lowest energy on any
regions with a given accuracy ε . By measuring the total number of grid poi ts
this mesh size, we claim that, due to the adaptivity, our proposed scheme requ
less subdivisions than other comparable methods.  
 
Indeed, suppo e th tive schem  to reach th
denoted as L . Since after a refinement stage, each interval is either sub N  

vel subinterval (t re are at most two such intervals) or left unchanged, the mesh s
is reduced b

s e ize at each le
 a factor of

 h
y  N1  and the total number of intervals is increased by at most )1(2 −N . 

Hence LNh 1=  or hL N 1log= . It follows also that the total number of inte  rvals needed to
 N  is taken 
rime

 should have 
nts). A 

rds, )(ln TN ′T ON = ican ber of axis

n needed to reach 
ires significantly 

s e number of levels required for the adap e is mesh size is 
divided into 

reach a mesh size h  is NhNNLNNNT ln)1ln)1(2()1(2 −+=⋅−+= . Note
to be a constant independent of h  (we use a fixed 10=N  in the numerical 
comparable full uniform grid scheme (like the one in the Chen et al algorith
approximately hNT 1=′  grid points to yield the same accuracy as the scheme proposed above. 

h

 that
expe
m)

In other wo , which implies a signif t reduction in the num  

Second, let us assess the amount of work required by each of the algorithms for finding a starting 
point for the two-phase equilibrium calculation prior to the optimization based on the same mesh 
size . We again can claim an advantage of our scheme in comparison with the approach of 
Chen et al due to a significant reduction in the number of required coplanarity checks. Below is 
the step by step analysis of the computational complexity that verifies to our claim. 
 
From the point of view of complexity, Algorithm 1 as given in section 3.1.1 can be divided into 
the following major stages: 

subdivisions comparing to the uniform scheme. 
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i) =],[ indA StabilityRegions( ,1,2N,K) – stability region calculation 
To compare energy values for all 

0
K  phases at each grid point, we need 2 KN ⋅  operations, 

ependence on h. 

s where the total 
rs sweep, we detect 
to l of  function 

eco eep, 

which is the total complexity for this stage. Notice that this estimate has no d
ii) Starting points calculation 

AdaptiveSearch procedure is performed on each of the ind stability region
number of stability regions ind  is a constant independent of. h. At the fi t 
inflection points by calculating second derivatives at each grid point: a ta
evaluations if a 3-point stencil is used in the derivative calculation. At the s

 N3
nd sw N  

N4  first derivatives are calculated n at ervals, which adds up t
function evaluations if a 2-point s

o most 2 subint o a l of
tencil is used in derivative calculation. If

with pred racy 

 tota
 the critic

 
al point 

efined accu ε  after NhL ln/)1(ln= adaptive grid refinements, 

( )hO= 1ln

was detected 
the first derivative calculation had to be repeated Nh ln/)1(ln  times. It 
overall complexity of this stage is given by ( ) NhindNindN ln/1ln43 ⋅⋅+⋅ . 

 
iii) Coplanarity checks 

At the last stage of the Algorithm 1, two coplanarity checks are performed for all selected
pairs. A coplanarity check for p  selected points requires a cal lacu tion of a total of 

 inant calculations for each of the ))2(122)(1(5.0 −+− ppp operations (determ )1(5.0 −pp  
ity of th usi  the total 

s of 
s is ic  configuration a

t h1 .  

follows that the 

pairs). The total complex s stage is th  ))2(122)(1( −+−= pppP
number of selected pair

N  without further refinement, our 
scheme has a total complexity of ( )hO 1ln

. Since
 specif  to the system nd does not depend on the 

ermrefinements, the final stage does not raise the overall algorithm complexity in 
 
It follows from the above estimation 

T

that, for fixed parameter 
. 

t al algorithm of 
comp

 
Likewise we can calculate the number of operations required for the Chen e

arable accuracy ( hN 1=′ e total number of subdivisions req

alg

 is th uired). As we have seen 
in Section 2.3, it can be roughly estimated as  

( ) ( ) (( 112211))2(1()2(122)1(5.0 hhhhKNNN TTT −+−+=−′+−′′⋅+
Here TNK ′⋅  operations are spent on stability checks, while  coplanarity chec
pairs takes up the rest of the complexity. It is obvious that for small h

( )hO 1ln  is significantly lower than the ( )31 hO  complexity of the Chen et 

smaller than a 0.0 5≈h  for our example), the 
adaptive scheme proposed above outperforms the uniform grid algorithm, and its advantage 
becomes even more visible as the mesh size required to detect the lowest energy decreases.  
 

3.3 Generalization to higher dimensions and sampling schemes 
 
In light of the results derived in the previous section, the new adaptive technique possesses an 
advantage over other schemes in that it needs significantly less points and operations to achieve 

)) ( )312 hONK T =′⋅ . 
 the k for each of the 

 our complexity 
al orithm. 

 
As an illustration, let us fix 10=N , Kind 2=  (the maximum number of stability regions in 2d) 

plexity estimates and indp ⋅= 2 . The graph in Figure 5 illustrates the behavior of calculated com
for the uniform Chen et al type scheme versus the new algorithm for the 2=K  (two phase) case. 
It is clear that for a mesh size  critical value (
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the required accuracy. Still, such a scheme also becomes computationally dem
dimension of the system starts to grow. However, there

anding when the 
 are some ideas that can be entertained in 

ce the complexity 
ions up to

order to reduce the complexity of the method in higher dimensions. 
 
For instance, the Hammersley or Halton quasi-random sequences can help redu
while allowing for critical point detection with the same accuracy in dimens  8=s  

 are low-
 

(degradation and correlation can occur in
discrepancy point sets in a sense that the discrepancy (deviation from the uniform
an N point sequence in s -dimensional case satisfies ))(log( 11* −−= s

N NNOD
Halton sequenc

 higher dimensions). These sequences
 distribution) of

 (see [11]). The 
e is superior to that of the Hammersley in that it builds upon the previous sets as 

the number of points increases. We can hope that the use of these sequences will allow to detect 
cing the overall 

ategy is the need 
for  of accuracy in 

by introducing a 
iently small grid 

uced by such types of calculation is at least of the order of  and often 
c  [12]. The 
 used for all grid 
ndently on each 

 
The most attractive property of quasi-random sequences is that they dramatically reduce the error 

om construction 
e derivative information is used 

adaptively in the process of mesh construction. 
 

4. Results for binary and ternary systems 

tional, where the 

critical points with the accuracy similar to a uniform approach while redu
computational cost.  
 
The difficulty of using quasi-random approach with any adaptive refinement str

 a careful point ordering. One should also think about the possible loss
derivative calculations done on such a mesh. The last obstacle can be avoided 
finer regular grid around each point for finite difference calculations. For suffic
size h , the error introd  )(hO

heme)( 2hO  for the first and second order derivatives depending on the difference s
overall complexity will not be affected if a fixed number of auxiliary points is
points. To overcome the ordering difficulty, one can reorder the points indepe
subset after each refinement. 

bounds for integration [11]. This gives us reason to believe that the quasi-rand
can potentially work very well in our case, especially if th

 
All examples given below rely on the following form of the Gibbs energy func
excess Gibbs energy is expressed in the form of Redlich-Kister polynomial:  

∑∑ ΦΦΦ ++= m
xs

iii
0
im G ln xxRT  Gx  G

∑∑Φ =xs   xxG

Performance estimates have been done with the Matlab 6.5 implementation of the algorithm on a 
Pentium 4 2.4Ghz machine with 512MB RAM Figures 6(a) through 8(a) show phase diagrams 
computed using this implementation of the new method, while Figures 6(a) through 7(b) are 
reproduced from [13] and are created using Thermocalc software with the aid of a priori 
knowledge of the system. 
 

4.1 Binary examples 
 

=

Φ

>

n

0k

k
jiji,jim

ii

)x-(x L 
ij
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First, a projection for we consider a Ca-Li-Na system. Figure 6(a) represents its binary Li-N
KT 900= , where the miscibility gap occurs. As shown in Figure 1, the

calculation done by the Thermocalc software independently produces unaccepta
the miscibility gap is not specified

 phase diagram 
ble results when 

 manually. The method described above detects the existing 
liquid and bcc miscibility gaps and correctly predicts the corresponding phase diagram with 

ruction with the 

absolutely no additional input from the user. 
 
In the Matlab 6.5 implementation, the complete Li-Na phase diagram const
temperature step size Kdt o1=  took about 232 sec. Anothe ple is the Cr exam a-Na projection 
calculated at KT 900=

eratures and a liquid m Ko1000
. Here all three phases (liquid, bcc, fcc) form stable equilibria at different 

temp t temperatures higher thaniscibility gap occurs a . It took 261 
sec to produce the complete diagram which is given in Figure 7(a) below.  
 

4.2 Ternary examples 
 
Figure 8 shows the Gibbs energy of the ternary Ca-Li-Na system at KT 900= . 
indicates the common tangent found by the new algorithm for the miscib
remained undetected during unassisted Thermocalc run producing incorrect di
1(b). The outline of the procedure used to compute ternary diagrams is a
preprocessing module was designed that is capable of handling arbitrary terna
given database specifications and can be integrated direc

The straight line 
ility gap, which 
agram in Figure 
s follows. The 

ry systems from 
tly into the Thermocalc. Steps 1 and 2 of 

the Algorithm 2 discussed in section 3.1.2 are performed in this preprocessing module prior to 
the optimization. Results of the  calculation are then automatically recorded in the 

ce the complete 
ssing routine did 

uction algorithm 
ethods in terms 

t can be used to 
lculation of phase equilibria in complicated systems. Numerical results for binary 

and ternary systems show go matic calculations with prior results. 
 

ies an increased 
solution and the 

complexity of the scheme. Possible higher dimensional solutions including better sampling 
techniques discussed above are the main focus of our current research and will be discussed in 
future publications. 
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 preprocessing
corresponding macro file that can be further fed into Thermocalc to produ
diagram as the one shown in Figure 1(a). The timing overhead of the preproce
not exceed 5 sec for any of the above fixed temperature calculations. 
 

5. Conclusions 
 
In this paper, we propose a new scheme to optimize the phase diagram constr
adopted in Thermocalc. The new algorithm possesses advantages over existing m
of the convergence speed, the computational complexity and the robustness. I
automate the ca

od agreement of auto

As discussed earlier for the higher space dimensions, the new approach carr
computational load, so a tradeoff must be made between the accuracy of the 
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(a) 

 
(b) 

 
Figure 1: (a) Correct Ca-Li-Na phase diagram at T=900K produced by specifying the 

set_miscibility_gap option; (b) diagram produced with no set_miscibility_gap 
option
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Figure 2: Linear axis transformation performed at first stage of the algorithm. 
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Figure 3: Stability regions for a binary 4-phase system and corresponding starting  
values for the optimization procedure . 
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Figure 4. One of possible arrangements of critical points and corresponding starting points 
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Figure 5. Complexity estimates for the proposed scheme compared to the Chen et al  
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(a) 

 
(b) 

 
 
 

Figure 6: Li-Na phase diagrams calculated by the new (a) and Thermocalc (b) methods.
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(a) 

 
(b) 

 
 

Figure 7. Ca-Na phase diagrams calculated by the new (a) and Thermocalc (b) methods. 
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Figure 8. Gibbs energy for the Ca-Li-Na system showing miscibility gap. 
 


