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Abstract. A popular vector quantization scheme can be constructed by the Centroidal Voronoi
tessellations (CVTs) which also have many other applications in diverse areas of science and engi-
neering. The development of efficient algorithms for their construction is a key to the successful
applications of CVTs in practice. This paper studies the details of a new optimization based mul-
tilevel algorithm for the numerical computation of the CVTs. The rigorous proof of its uniform
convergence in one space dimension and the results of computational simulations are provided. They
substantiate recent claims on the significant speedup demonstrated by the new scheme in comparison
with traditional methods.
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1. Introduction. Optimal vector quantization is used in many applications such
as image and data compression, pattern recognition, image rendering and so on [20].
A vector quantizer maps N -dimensional vectors in the domain Ω ⊂ RN into a finite
set of vectors {zi}ki=1. Each vector zi is called a code vector or a codeword, and
the set of all the codewords is called a codebook. A special quantization scheme is
given by the Voronoi tessellation which associates with each codeword zi, also called
a generator, a nearest neighbor region that is called a Voronoi region {Vi}ki=1. That
is, for each i, Vi consists of all points in the domain Ω that are closer to zi than to all
the other generating points, and a Voronoi tessellation refers to the tessellation of a
given domain by the Voronoi regions {Vi}ki=1 associated with a set of given generating
points {zi}ki=1 ⊂ Ω [1, 32].

With a suitably defined distortion measure, an optimal quantizer can be described
as a Centroidal Voronoi tessellation. For a given density function ρ defined on Ω, we
may define the centroids, or mass centers, of regions {Vi}ki=1 by

z∗i =
( ∫

Vi

yρ(y) dy
)(∫

Vi

ρ(y) dy
)−1

. (1.1)

Then, an optimal quantization may be constructed through a centroidal Voronoi tes-
sellation (CVT) for which the generators of the Voronoi tessellation are the centroids
of their respective Voronoi regions, in other words, zi = z∗i for all i. Such a connection
between the CVTs and optimal quantization schemes has been explored extensively
in the literature [12].

Given a set of points {zi}ki=1 and a tessellation {Vi}ki=1 of the domain, we may
define the energy functional or the distortion value for the pair ({zi}ki=1, {Vi}ki=1) by:

G
(
{zi}ki=1, {Vi}ki=1

)
=

k∑

i=1

∫

Vi

ρ(y)|y − zi|2 dy . (1.2)
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The minimizer of G, that is, the optimal quantizer, necessarily forms a CVT which
illustrates the optimization property of the CVT [12]. The terms optimal quantizer
and CVT are thus to be used interchangeably in the sequel. For more studies on
optimal quantization schemes, we refer to [20, 22, 36]. We note that, besides providing
an optimal least square vector quantizer design in electrical engineering applications,
the CVT concept also has applications in diverse areas such as astronomy, biology,
image and data analysis, resource optimization, sensor networks, geometric design,
and numerical partial differential equations [4, 7, 12, 13, 14, 15, 16, 17, 25, 26, 31,
37, 38]. We refer to [12] for a more comprehensive review of the mathematical theory
and diverse applications of CVTs.

In the seminal work of Lloyd on the least square quantization [30], one of the
algorithms proposed for computing optimal quantizers is an fixed point type iterative
algorithm consisting of the following simple steps: starting from an initial quanti-
zation (a Voronoi tessellation corresponding to an old set of generators), a new set
of generators is defined by the mass centers of the Voronoi regions. This process is
continued until certain stopping criterion is met. For algorithms on the computation
of Voronoi tessellations, we refer to [1, 18, 19]. It is easy to see that the Lloyd algo-
rithm is an energy descent iteration of the energy functional (1.2), which gives strong
indications to its practical convergence. We refer to [10] for some discussions on the
recent development of a rigorous convergence theory.

Lloyd’s algorithms and their variants have been proposed and studied in many
contexts for different applications [14, 20, 29, 34]. A particular extension using parallel
and probabilistic sampling was given in [26] which allows efficient and mesh free
implementation of the Lloyd’s algorithm. Still, Lloyd algorithm is at best linearly
convergent. Moreover, it slows down as the number of generators gets large.

For modern applications of the CVT concept in large scale scientific and engineer-
ing problems such as data communication, vector quantization and mesh generation,
efficient algorithms for computing the CVTs play crucial roles.

Recently, a new multilevel approach to the optimal quantization problem has been
developed [8, 11]. The new multilevel scheme offers considerable speed up over the
traditional methods such as the celebrated Lloyd iteration. It can be combined with
other techniques together to accelerate the computation of CVTs and the optimal
vector quantizers. In this paper, we present a rigorous mathematical theory for the
new algorithm. We focus on the main characteristics of this multilevel scheme, namely,
the uniform convergence with respect to the problem size. Though the result is
shown in one space dimension only, such a result is the first of its type in the vector
quantization field and on the computation of CVTs. Proofs for higher dimensional
cases are more involved, and they are now being worked out in our ongoing study
[11].

The rest of the paper is organized as follows. In section 2, the optimization-based
nonlinear multilevel algorithm is introduced. In section 3, the uniform convergence
theory is established. Numerical results demonstrating its superiority over traditional
methods are given in section 4. Final conclusions are made in section 5.

2. Optimization-based nonlinear multilevel algorithm. Since the original
concept of centroidal Voronoi tessellations is related to the solution of a nonlinear
optimization problem, and the monotone energy descent property is preserved by the
Lloyd’s iteration [12], we may thus investigate whether monotone energy reduction
can be achieved in a multilevel procedure which would also improve the performance
of the simple-minded iteration.
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The problem of constructing a CVT is nonlinear in nature, hence standard linear
multigrid theory cannot be directly applied. There are still several ways one could
implement a nonlinear multilevel scheme in this context (see [8, 9, 27, 28]). A Newton
type acceleration method, studied earlier in [9], is based on some global linearization
as the outer loop, coupled with other fast solvers in the inner loop. Alternatively, we
now study an approach that overcomes the difficulties of the nonlinearity by essentially
relying on the direct energy minimization without any type of global linearization.

Let us define the energy functional

H
(
{zi}ki=1) = G

(
{zi}ki=1, {Vi}ki=1

)
(2.1)

where {Vi}ki=1 forms the Voronoi tessellation with generators {zi}ki=1. The CVTs and
optimal quantizers are closely related to the problem of minimization of the functional
H. In fact, we may note that the vector of generators of a CVT forms a critical point
of H and vice versa [12]. That is, at a CVT (or optimal quantizer), we have ∇H = 0.
This is one of the important characterizations of the CVTs which will be used in the
later discussion.

In our study here, we follow the ideas presented in the literature on the extension
of multigrid ideas to nonlinear optimization problems (see [5, 21, 23, 24, 35] and the
references cited therein). However, we observe that a direct application of multilevel
schemes to the minimization of H is not the best strategy. We illustrate later in this
section that an alternative minimization formulation can be introduced to make the
problem of computing CVTs more amenable for the multilevel framework.

2.1. Space decomposition. Since the energy functional is in general non-
convex, it turns out to be very effective to relate our problem to an equivalent opti-
mization problem through a technique that mimics the role of a dynamic nonlinear
preconditioner. More precisely, denote R = diag(R−1

i , R−1
2 , ..., R−1

k ) a diagonal ma-
trix whose diagonal entries {Ri =

∫
Vi
ρ(y) dy} are the masses of the corresponding

Voronoi cells. It is easy to deduce that R∇H = 0 at a CVT. Hence we arrive at an
equivalent formulation of the minimization problem: min ||R∇H||2, with respect to
the standard Euclidean norm.

A key observation is that as R varies with respect to the generators, the above
transformation or dynamic preconditioning keeps the modified objective functional
convex in a suitably large neighborhood of the minimizer and therefore makes the
new formulation more amenable to analysis than the original problem. Now, if we
define the set of iteration points W by

W = {(wi)|k+1
i=0 | 0 = w0 ≤ wi ≤ wi+1 ≤ wk+1 = 1, ∀ 0 ≤ i ≤ k} ,

we can design a new multilevel algorithm based on the following nonlinear optimiza-
tion problem

min
Z∈W

H̃(Z), where H̃(Z = {zi}k+1
i=0 ) = ||R∇H({zi}ki=1)||2 . (2.2)

The functional H̃ may be regarded as a dynamically preconditioned energy. Viewing
W as a set of grid points in the unit interval, we may denote by T = TJ a finite
element mesh corresponding to W, and consider a sequence of nested quasi-uniform
finite element meshes T1 ⊂ T2 ⊂ . . . TJ , where Ti consists of all finite element meshes
{τ i

j}ni
j=1 with mesh parameter hi, such that ∪ni

j=1τ
i
j = Ω. Corresponding to each finite
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element partition Ti (i = 1, ..., J), there is a finite element space Wi defined by

Wi = {v ∈ H1(Ω) | v|τ ∈ P1(τ), ∀τ ∈ Ti} .
For each Wi, there corresponds a nodal basis {ψi

j}ni
j=1, such that ψi

j(x
i
k) = δjk, where

δjk is the usual Kronecker Delta function and {xi
k}ni

k=1 is the set of all nodes of the
elements of Ti with xJ

1 = 0, xJ
nJ

= 1. Define the corresponding one-dimensional
subspaces Wi,j = span{ψi

j}. Then the decomposition can be regarded as

WJ =
J∑

i=1

ni∑

j=1

Wi,j =
J⊕

i=1

W̄i

where W̄i = Wi/Wi−1 for i > 1 and W̄1 = W1. Now clearly for each ψi
j ∈Wi, we

can find a vector ψ̄i
j = {ψ̄i

jm} ∈ RnJ , such that ψi
j(x) =

∑nJ

m=1 ψ̄
i
jmψ

J
m(x), for x ∈ Ω.

The above setup naturally applies to higher dimensional cases, where W consists
of grids points in a higher dimensional domain and is discussed in more details in [11].
Here we will restrict our attention to the 1-dimensional case. It may be then noted
that the set of basis functions

Qi = [ψ̄i
1, . . . , ψ̄

i
ni

]T ∈ Rni×k

used at each iteration can be pre-generated using the recursive procedure: QJ = Ik×k

and QJ−s = (Πs
i=1PJ−i)QJ where Pi is the basis transformation from space Wi+1 to

Wi which plays a role of a restriction operator.

2.2. Description of the algorithm. Using the above notations, we design the
Algorithm 2.1 which is a multilevel successive subspace correction algorithm [5, 39].
Each step of the procedure outlined below involves solving a system of nonlinear
equations which plays the role of relaxation. We can use the Newton iteration to
solve this nonlinear system. Solution at current iterate is updated after each nonlinear
solve by the Gauss-Seidel type procedure, hence the resulting scheme is successive in
nature. The ”slash” cycle can be defined as follows.

Algorithm 2.1. Successive correction V (ν1, 0) scheme
Input:
k, number of generators; u1 = {zi}k+1

i=0 , the ends plus the initial set of generators.
Output after n cycles:
un = {zi}k+1

i=0 , the ends plus the set of generators for CVT {Vi}ki=1.
Method: For n > 1, given un, do
1. For i = 1 : J
ūn+ i−1

J
= un+ i−1

J

For l = 1 : ν1
ūn+ i−1

J
= ūn+ i−1

J
+ α0

j lψ̄
i
j ∈ W̄i sequentially for 1 ≤ j ≤ ni,

such that H̃(ūn+ i−1
J

+ α0
j lψ̄

i
j) = min

αjl

H̃(ūn+ i−1
J

+ αj lψ̄
i
j),

endfor.

un+ i
J

= ūn+ i−1
J

= un+ i−1
J

+ ei
n, where ei

n =
ν1∑

l=1

ni∑

j=1

α0
j lψ̄

i
j

endfor.
2. On the coarsest level, un+1 ←CoarseGridSolve(un+1).
3. n = n+1
4. Repeat the procedure 1 to 3 until some stopping criterion is met.

4



Here ν1, ν2 denote the number of Gauss-Seidel iterations (smoothings) used at each
level. Although it is enough to have ν1,2 = 1 in theory, larger values need to be
used in practice due to the numerical error in solving the nonlinear system. The
values ν1,2 ≤ 3 usually suffice for the optimization to reach saturation. In the above
description, no post-smoothings are used to make the analysis more transparent.
A complete V (ν1, ν2) cycle with ν2 post-smoothings can be defined and anlayzed
in a similar fashion. The algorithm uses a procedure CoarseGridSolve(Z), which,
as the name indicates, refers to finding the solution at the coarsest level. In our
implementation, this procedure consists of applying Lloyd method for a few steps or
until saturation. In general, other efficient optimization methods, as well as Newton’s
method, can be used in order to quickly damp the error, since the number of unknowns
on the coarsest grid remains relatively small. The algorithm essentially only depends
on the proper space decompositions and its relation to the set of generators, thus it is
applicable in any dimension. The more general forms, including detailed description
of the grid coarsening procedure, will be discussed in our subsequent works.

3. The uniform convergence theory. The uniform convergence of the new
multilevel scheme can be rigorously proved, at least, for a large class of density func-
tions in one dimensional space. This is the first step towards a more comprehensive
theoretical analysis of this type of multilevel schemes in general. Here, let us first
establish some important properties of the energy functional defined in 2.2. Then, we
introduce our main convergence results. Without further notice, all the analysis in
this section is restricted to the one dimensional case only and we further without loss
of generaity assume that the domain is simply the unit interval Ω = (0, 1), which can
always be transformed into any other intervals.

3.1. Technical lemmas. First, we can supply each y = u− v, where u, v ∈W
and y0 = yk+1 = 0, with the following norm:

||y||2W =
1
k

k+1∑

i=1

(yi − yi−1)2 .

In the discussion that follows we say that a functional F satisfies the convexity
and continuity properties in W , if there exist constants K > 0, L > 0, satisfying

(F ′(w)− F ′(v), w − v) ≥ K||w − v||2W ,∀w, v ∈W , (3.1)
(F ′(w)− F ′(v), w − v) ≤ L||w − v||2W ,∀w, v ∈W . (3.2)

To simplify the presentation, let us introduce the following notations: for i =
1, . . . , k, u−i = ui+ui−1

2 , u+
i−1 = ui−1+ui

2 , ai = ui − ui−1, bi = wi − wi−1, and xi =
ui − wi, with u0 = w0 = 0, uk+1 = wk+1 = 1 being the fixed ends of the interval.

Let us now first turn our attention to the case of a constant density. In this simple
case, with the above notation, we get the following result for the preconditioned energy
functional,

Proposition 3.1. Let ρ(x) = 1 be the density function on [0, 1]. Then the
following relation holds for all u,w ∈W :

(H̃′(u)− H̃′(w), u− w) =
1
2

k+1∑

i=1

(ai − bi)2 .
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Proof.

∂H̃
∂ui

= 2(ui − Ti) = 2
(
ui − u+

i + u−i
2

)
=

1
2
(ai − ai+1)

(H̃′(u)− H̃′(w), u− w) =
1
2

k∑

i=1

(ui − wi)(ai − ai+1 − bi + bi+1) =

=
1
2

k∑

i=1

(ui − wi)(ai − bi)− 1
2

k∑

i=1

(ui−1 − wi−1)(ai − bi) =
1
2

k+1∑

i=1

(ai − bi)2 .

Corollary 3.1. For a constant density, the functional F = k−1H̃ satisfies the
continuity and convexity conditions with K = L = 1/2 for all points in W.

Note that this is a simple consequence of the fact
∑k+1

i=1 (ai − bi)2 = k||u−w||2W.
One can extend the above result to a broader class of density functions. First,

the following auxiliary lemma can be verified.
Lemma 3.2. Let m ≤ g(x) ≤M on [0, 1], M ′ = supx∈[0,1] g

′(x) and define

Qi(u) =

∫ u+
i

u−i
(2u− (u+

i + u−i ))g(u)du

(u+
i − u−i ) + ε

∫ u+
i

u−i
g(u)du

.

Then we get

|Qi(u)−Qi(w)| ≤ (M +M ′ + εM2 + 3εMM ′)αi ,

where αi = |u+
i − w+

i |+ |u−i − w−i |.
Proof. Denote

Qi(u) =

∫ u+
i

u−i
(2u− (u+

i + u−i ))g(u)du

(u+
i − u−i ) + ε

∫ u+
i

u−i
g(u)du

=
Ni

Di
.

In order to represent the above expression in a more convenient form, we employ
the following change of variables argument:

∫ β

α

f(x) dx = (β − α)
∫ 1

2

− 1
2

f
(α+ β

2
+ z(β − α)

)
dz .

Introducing − 1
2 ≤ z ≤ 1

2 , we can rewrite u(z) =
u+

i + u−i
2

+ z(u+
i − u−i ) and

w(z) =
w+

i + w−i
2

+ z(w+
i − w−i ). Then for the numerator we have:

Ni(u) =
∫ u+

i

u−i
(2u− (u+

i + u−i ))g(u)du

= 2(u+
i − u−i )

∫ 1
2
− 1

2
z(u+

i − u−i )g(u(z)) dz

= 2(u+
i − u−i )2

∫ 1
2
− 1

2
g(u(z))z dz

while the denominator is equal to

Di(u) = (u+
i − u−i )

(
1 + ε

∫ 1
2

− 1
2

g(u(z)) dz
)
.
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For the ratio Qi =
Ni

Di
we have

Ni(u)
Di(u)

=
2(u+

i − u−i )
∫ 1

2
− 1

2
g(u(z))z dz

1 + ε
∫ 1

2
− 1

2
g(u(z)) dz

.

For simplicity let us redefine the modified numerator as

Ñi(u) = 2(u+
i − u−i )

∫ 1
2

− 1
2

g(u(z))z dz

and denominator as

D̃i(u) = 1 + ε

∫ 1
2

− 1
2

g(u(z)) dz .

In the new notations,

|Qi(u)−Qi(w)| ≤ 1
D̃i(u)D̃i(w)

∣∣∣Ñi(u)D̃i(w)− Ñi(w)D̃i(u)
∣∣∣

≤ 1
2

∣∣∣Ñi(u)− Ñi(w)
∣∣∣
(
D̃i(u) + D̃i(w)

)

+ 1
2

(
Ñi(u) + Ñi(w)

)∣∣∣D̃i(u)− D̃i(w)
∣∣∣ .

Notice further that |u(z)− w(z)| ≤ |u+
i − w+

i |+ |u−i − w−i | = αi. It follows that

∣∣∣D̃i(u)− D̃i(w)
∣∣∣ = ε

∣∣∣
∫ 1

2

− 1
2

(g(u(z))− g(w(z))) dz
∣∣∣ ≤ εM ′αi ,

∣∣∣Ñi(u)− Ñi(w)
∣∣∣ = 2

∣∣∣
∫ 1

2

− 1
2

((u+
i − u−i )g(u(z))− (w+

i − w−i )g(w(z)))z dz
∣∣∣

≤ (M +M ′)αi .

Finally, since 1 ≤ D̃i ≤ 1 + εM , and Ñi ≤ 2M , we have

|Qi(u)−Qi(w)| ≤ 1
2

(
2(M +M ′)(1 + εM) + 4εMM ′

)
αi

so that

|Qi(u)−Qi(w)| ≤ (M +M ′ + εM2 + 3εMM ′)αi . (3.3)

This gives the result of the lemma.
With the help of Lemma 3.2 we can derive the following
Proposition 3.2. For any ρ(x) = 1 + εg(x) with ε suitably small, there exist

constants Cl and Cu such that for any u,w ∈W and with the notation defined earlier,

Cl

k+1∑

i=1

(ai − bi)2 ≤ (H̃′(u)− H̃′(w), u− w) ≤ Cu

k+1∑

i=1

(ai − bi)2 .

Proof. Direct calculation gives

∂H̃
∂ui

=
2

Mi(u)

( ∫
(ui − u)du+ ε

∫
(ui − u)g(u)du

)
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=
(u+

i − u−i )(2ui − u+
i − u−i ) + 2ε

∫
(ui − u)g(u)du

(u+
i − u−i ) + ε

∫
g(u)du

= 2ui − u+
i − u−i +

2ε
∫

(ui − u)g(u)du− ε(u+
i − u−i )

∫
g(u)du

(u+
i − u−i ) + ε

∫
g(u)du

=

=
1
2

(
ai − ai+1

)
− ε

(∫
(2u− (u+

i + u−i ))g(u)du
(u+

i − u−i ) + ε
∫
g(u)du

)
=

1
2

(
ai − ai+1

)
− εQi

where the integrals all refer to the integral over [u−i , u
+
i ]. Then,

(H̃′(u)− H̃′(w), u− w) =
1
2

k∑

i=1

(ai − bi)2 − ε(Q(u)−Q(w), u− w) . (3.4)

The first term in (3.4) comes from the constant part of the density and hence com-
plies with the results of the previous theorem. It remains to get a similar estimation
for the second term. From the Cauchy inequality,

|(Q(u)−Q(w), u− w)| ≤
k∑

i=1

|Qi(u)−Qi(w)| · |ui − wi| . (3.5)

Combining (3.3), (3.4) and (3.5), we get

(H̃′(u)− H̃′(w), u− w) ≤
k∑

i=1

(ai − bi)2
2

+2ε(M +M ′ + εM2 + 3εMM ′)
k∑

i=1

(|u+
i − w+

i |+ |u−i − w−i |)|ui − wi|

≤
k∑

i=1

(ai − bi)2
2

+ 4ε(M +M ′ + εM2 + 3εMM ′)
k∑

i=1

|ui − wi|2 .

Since x0 = 0, we have the inequality
k∑

i=1

x2
i ≤ 2k

k∑
i=1

(xi − xi−1)2. So,

(H̃′(u)− H̃′(w), u− w)

≤
(

1
2 + 8kε(M +M ′ + εM2 + 3εMM ′)

) k∑

i=1

(ai − bi)2 ≤ kCu||u− w||2W ,

for some constant Cu with kε being suitably and uniformly small. Same arguments
applied to the lower bound yield

(H̃′(u)− H̃′(w), u− w)

≥
(

1
2 − 8kε(M +M ′ + εM2 + 3εMM ′)

) k∑

i=1

(ai − bi)2 ≥ kCl||u− w||2W .

for some constant Cl. The proposition is thus proved.
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Note that it follows from Proposition 3.2 that the functional F = k−1H̃ preserves
the continuity and convexity for the perturbation of the constant density with ε =
o(k−1).

In addition to showing that the energy functional possesses convexity and conti-
nuity properties, we also need the following conditions on the space decomposition to
be satisfied:
Condition A.
∀v ∈W, ∃vi ∈ W̄is.t.

∑J
i=1 vi = v, and

(
J∑

i=1

||vi||2W̄i
)1/2 ≤ C1||v||W .

for some C1 independent of k.
Condition B. ‘Strengthened Cauchy-Schwartz’
∀wij ∈W, ui ∈ W̄i, vj ∈ W̄j ⇒

J∑

i,j=1

(F ′(wij + ui)− F ′(wij), vj) ≤ C2(
J∑

i=1

||ui||2W̄i
)1/2(

J∑

j=1

||vj ||2W̄j
)1/2 .

for some C2 ≤ cL, where c is independent of k.
These conditions are verified below. First, we have
Theorem 3.3. For the nested subspace decomposition with the choice of the ’hat’

basis functions, (
J∑

i=1

||vi||2W̄i
)1/2 = ||v||W, so that C1 = 1. Moreover, for F = k−1H̃,

C2 can be estimated as C2 = L ·max
j

(
J∑

l=1

2−|j−l|) ≤ 2L.

Proof. Notice that ’hat’ functions form an orthogonal basis, so

(
J∑

i=1

||vi||2W̄i
)1/2 = ||v||W

follows easily from calculation. As for the C2, first notice that for any w, u, v ∈W,
using the arguments similar to those in the proof of Propositions 3.1 and 3.2 and
bounding the l2-norm by the W-norm, we can get

(H̃′(u+ w)− H̃′(w), v) =
1
2

k+1∑

i=1

(vi − vi−1)(ui − ui−1)− ε(Q(u+ w)−Q(w), v)

=
1
2

∑

supp(u)∩supp(v)

(vi − vi−1)(ui − ui−1)− ε(Q(u+ w)−Q(w), v)

≤ k

2
||u||W,supp(u)∩supp(v) · ||v||W,supp(u)∩supp(v) + εM̃

∑

supp(u)∩supp(v)

|ui||vi|

≤ k(1/2 + 4εM̃)||u||W,supp(u)∩supp(v) · ||v||W,supp(u)∩supp(v)

= kL||u||W,supp(u)∩supp(v) · ||v||W,supp(u)∩supp(v)

where M̃ = 2(M + M ′ + εM2 + 3εMM ′) as defined in Proposition 3.2 and L =
1/2 + 4εM̃ is the continuity constant.
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Now since ∀u ∈Wj , v ∈Wl, we have supp(u) ∩ supp(v) = 2−|j−l|supp(v) in the
case of one-dimensional hat basis. Moreover,

||v||W,supp(v)∩supp(u) = 2−|j−l|||v||W.

It follows that, since for any symmetric matrix ||Ax|| ≤ ρ(A)||x|| ≤ max
i

(
n∑

j=1

|aij |)||x||,

J∑

i,j=1

(H̃′(wij + ui)− H̃′(wij), vj) ≤ kL
J∑

i,j=1

2−|i−j|||ui||W||vj ||W

≤ L
(

max
j

J∑

i=1

2−|i−j|
)( J∑

i=1

||ui||2W̄i

)1/2( J∑

j=1

||vj ||2W̄j

)1/2

.

Henceforth, we have C2 = L ·max
j

J∑

i=1

2−|i−j| ≤ 2L.

Note that although the proof above is presented for the special case of the ’hat’
basis that we used in our numerical implementation, similar arguments can be used to
show that Conditions A and B hold for other suitable bases. Indeed, since the energy
part of the argument does not depend on the decomposition, Conditions A and B will
remain true for any basis as long as

(
J∑

i=1

||vi||2W̄i
)1/2 ≤ C1||v||W

and

||v||W,supp(v)∩supp(u) ≤ c2−|j−l|||v||W
for some constants c, C1 independent of k.

3.2. Uniform convergence theorem. Finally, putting together Conditions A
and B and using convexity and continuity of F = k−1H̃ in W, we are ready to prove
the following uniform convergence result:

Theorem 3.4. Under Conditions A and B on space decomposition, Algorithm
3.1 converges uniformly in W for any density of the type ρ(x) = 1 + εg(x) with
sufficiently small ε. Moreover, dn = H̃(un)− H̃(u) satisfies

dn ≤ rdn−1, ρ ∈ (0, 1)

where r = C
1+C and C = C2

1C
2
2L/K

3.
Before proceeding to its proof, let us first state a consequence:
Corollary 3.5. In the case of a ”‘hat”’ basis, the constants C1 and C2 can be

estimated as C1 = 1 and C2 = 2L, so for example when ρ(x) = 1, C = 4.
The proof of this result is similar to the one given in [35] and relies on the following

technical lemma:
Lemma 3.6. Suppose the functional F satisfies the continuity and convexity

conditions in W. Then the following statements are true for all points v, w ∈W:

F (u)− F (v) ≥ (F ′(v), u− v) + K
2 ||u− v||2W

F (u)− F (v) ≤ (F ′(v), u− v) + L
2 ||u− v||2W .

10



Proof. Let φ(λ) = F (u + λ(v − u)). Then φ′(λ) = (v − u, F ′(u + λ(v − u))),
φ(0) = F (u), φ(1) = F (v). First inequality can be verified using fundamental theorem
of calculus and convexity assumption:

F (u)− F (v) = φ(0)− φ(1) = −
∫ 1

0

φ′(t)dt

= −
∫ 1

0

(v − u, F ′(u+ t(v − u)))dt =
∫ 1

0

(u− v, F ′(u+ t(v − u)))dt

=
∫ 1

0

(u− v, F ′(u+ t(v − u))− F ′(v))dt+
∫ 1

0

(u− v, F ′(v))dt

= (F ′(v), u− v) +
∫ 1

0

(F ′(u+ t(v − u))− F ′(v), u+ t(v − u)− v) dt

1− t
≥ (F ′(v), u− v) +K

∫ 1

0

||(1− t)(u− v)||2W
dt

1− t = (F ′(v), u− v) +
K

2
||u− v||2W .

The proof of the second inequality is analogous and follows from the continuity of
functional F .

3.3. Proof of Theorem 3.4.
Proof. Denote u to be the exact solution of (2.2). Consider un - the approximate

solution after one J-level iteration of the Algorithm 2.1. At the i-th level, since the
supports of the basis functions ψ̄i

j are disjoint in W̄i, we have

un+ i
J

= un+ i−1
J

+ ei
n, H̃(un+ i−1

J
+ ei

n) ≤ H̃(un+ i−1
J

+ vi),∀vi ∈ W̄i,

where in the notations of the algorithm, ei
n =

ν1∑

l=1

ni∑

j=1

α0
j lψ̄

i
j ∈ W̄i.

First notice that since the minimizer un+ i
J

satisfies (H̃′(un+ i
J
), v) = 0,∀v ∈ W̄i,

it follows from Lemma 3.6, that

H̃(un)− H̃(un+1) =
J∑

i=1

(H̃(un+ i−1
J

)− H̃(un+ i
J
))

≥
J∑

i=1

(
(H̃′(un+ i

J
), un+ i−1

J
− un+ i

J
) +

K

2
||un+ i−1

J
− un+ i

J
||2W̄i

)
=
K

2

J∑

i=1

||ei
n||2W̄i

.

Next, let us use Condition A to decompose un+1 − u =
J∑

i=1

vi. Then

(H̃′(un+1)− H̃′(u), un+1 − u) = (H̃′(un+1), un+1 − u)

=
J∑

i=1

(H̃′(un+1), vi) =
J∑

i=1

(H̃′(un+1)− H̃′(un+ i
J
), vi)

=
J∑

i=1

J∑

j≥i+1

(H̃′(un+ j
J
)− H̃′(un+ j−1

J
), vi)

≤ C2(
J∑

j=1

||ej
n||2W̄j

)1/2(
J∑

i=1

||vi||2W̄i
)1/2 .
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Hence

(H̃′(un+1)− H̃′(u), un+1 − u) ≤ C1C2(
J∑

j=1

||ej
n||2W̄j

)1/2||un+1 − u||W

≤ C1C2(
2
K

(H̃(un)− H̃(un+1)))1/2||un+1 − u||W .

Denote rn = H̃(un) − H̃(u), then H̃(un) − H̃(un+1) = rn − rn+1 and it follows from
the inequality above that

( 2
K

(rn − rn+1)
)1/2

≥ (H̃′(un+1)− H̃′(u), un+1 − u)
C1C2||un+1 − u||W .

Thus,

rn − rn+1 ≥ K

2

( (H̃′(un+1)− H̃′(u), un+1 − u)
C1C2||un+1 − u||W

)2

≥ K

2
(C1C2)−2K2||un+1 − u||2W ≥

K3

C2
1C

2
2L

rn+1 .

The last step of the argument uses the result of Lemma 3.6:

rn+1 = H̃(un+1)− H̃(u) ≤ L

2
||un+1 − u||2W .

As a consequence, we get

rn+1 ≤ C2
1C

2
2L

K3
(rn − rn+1)⇒ rn+1 ≤ C

1 + C
rn,where C =

C2
1C

2
2L

K3
.

Since for any basis satisfying Conditions A and B, C2
1C

2
2L/K

3 = O(L3/K3), the
convergence is uniform as long as the ratio L/K does not depend on k. By looking at
the L and K estimates obtained in Proposition 3.2, it is easy to see that this condition
is satisfied for any smooth perturbation of the constant density 1 + εg(x) with ε of
the order of O(1/k). This concludes the proof of the main theorem.

It follows that, for a suitable choice of decomposition in 1D, the asymptotic con-
vergence factor of our multilevel algorithm is independent of the size of the problem
and the number of grid levels, which gives a significant speedup comparing to other
methods, like the traditional Lloyd iteration. This claim is further substantiated by
the following numerical examples. Although for the sake of simplicity we have pre-
sented the detailed theory only for the case of the V (ν1, 0) multigrid cycle with no
post smoothings, same conclusions can be drawn for the case of the full V (ν1, ν2)
cycle, and the results of the numerical experiments in both cases are outlined below.

4. Numerical examples. We now report some numerical results of using the
new multilevel algorithm.

First we compare the results of our V (1, 1) multigrid implementation with the
usual Lloyd iteration for the one dimensional problem. Then, we present some results
for a two dimensional test problem in a parallelogram domain. The results are ob-
tained with the Matlab 6.5 implementation of the new algorithm. The test runs are
performed on a PC with a Pentium IV processor and 512MB RAM.
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Fig. 4.1. Plot of the convergence factor vs. the number of generators for the regular Lloyd
(upper) and the multilevel (lower curves) iterations for ρ(x) = 1 (top) and ρ(x) = 1+0.1x (bottom).
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Fig. 4.2. Computational time vs. problem size for the 1d implementation.

The one dimensional implementation is very straightforward. Here, we take the
unit interval and test a couple of different density functions, like ρ(x) = 1 and ρ(x) =
1 + x. We plot the convergence factor ρ ≈ |zn+1 − zn|/|zn − zn−1| for each V (1, 1)
cycle with respect to the total number of generators (grid points) involved.

Figure 4.1 substantiates the fact that the speed of convergence for the proposed
scheme remains nearly constant as the number of generators increases. In figure
4.2, the computational time needed for the V(1,0) implementation of the multilevel
method to reach 10−12 accuracy is given for ρ(x) = 1 and ρ(x) = 1 + x respectively.
The graph shows that in the 1-d case, the computational time scales almost linearly
with the problem size.

The data in the table 4.1 shows the stabilization of the number of multigrid cycles
V (ν1, ν2) needed to reduce the error to ε = 10−12 in the constant density case. While
there is a visible difference between the number of iterations required for V (1, 1) and
V (2, 2) cycles respectively, saturation occurs if the values of the relaxation parameters
are increased, which is why ν1,2 ≤ 2 in most of our calculations. The geometric rate
of the energy and error reduction asserted by the Theorem 3.4 are confirmed by the
experiments. Indeed, Figure 4.3 shows the convergence history of a V (1, 1)-cycle
against the total number of relaxations for the k = 129 case.

Next, the convergence factors for some two dimensional problems on a parallelo-
gram domain are compared in Figure 4.4. The bottom graph shows the convergence
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Table 4.1
The number of V (ν1, ν2) cycles needed vs. the number of generators.

k/V (ν1, ν2) V(1,0) V(0,1) V(1,1) V(2,0) V(0,2) V(2,2)

3 7 8 6 6 7 4

5 11 11 8 8 8 6

9 13 14 9 9 9 7

17 18 18 12 12 12 8

33 21 20 13 12 13 8

65 21 22 12 12 12 8

129 21 21 12 12 12 8

257 20 23 12 12 13 7

513 20 22 12 11 13 7

1025 19 22 11 11 13 7
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Fig. 4.3. The energy reduction (left) and the convergence history (right) for 129 generators in
the log-normal scale.

factor for the compatible relaxation, that is, a relaxation performed on the grid with
the exact solution given at the coarse nodes (see [2] for discusions on the compatible
relaxation). This factor can serve as s lower bound on the convergence factor of the
full multigrid cycle, and the quality of the coarse grid influences the distance between
the two graphs. As we can see from Figure 4.4, the result of the compatible relax-
ation in this case comes in good agreement with the convergence factor of the whole
V(1,0) cycle given on top, which is an indication of a good quality for the coarsening
procedure.

The convergence history plots are given in Figure 4.5. The top curves in both
graphs depict the error reductions given by the Lloyd iteration, while the graphs below
correspond to the convergence of the multigrid scheme for various problem sizes. One
can clearly see that the slopes of error reduction on the logarithmic scale do not depend
on the number of generators. We note that even though our theoretical results are
only proved in 1d here, it is clear that it remains valid in the higher dimensional
implementations.
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Fig. 4.5. (a) Convergence history for the multigrid scheme compared to the Lloyd

scheme shown on the top curve in the normal scale (left) and log-normal scale (right).

5. Conclusion. Recently, several methods have been proposed for accelerating
the convergence of the classical Lloyd iteration commonly used in the context of
quantization and in the construction of centroidal Voronoi tessellations [8, 9]. These
algorithmic advances are important for making the computation of optimal quantizer
more efficient and for many other successful applications of CVTs. A few possible
extensions that use multilevel techniques to accelerate the convergence of the CVTs
have been suggested. One of such extensions uses some algebraic multigrid solvers in
the spirit of [3, 6, 33] as preconditioners to accelerate the solution of the linear sys-
tem at every Newton iteration [9], while the other adopts an energy based nonlinear
multigrid approach with the use of a dynamic nonlinear preconditioning [8]. In this
paper, we focus on the latter approach, and for the first time, a rigorous analysis of
its convergence properties is presented for a class of one dimensional density func-
tions, with the results of several numerical experiments given for both one and two
dimensional cases. A more detailed analysis in the higher dimensional cases as well
as more efficient and robust implementations of the energy based nonlinear multigrid
approach are presently under investigation [11]. We conclude by commenting that
there is obviously a great potential in using such multigrid methods to accelerate the
optimal quantizer design and more generally the computation of centroidal Voronoi
tessellations.
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