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Abstract

There are many new applications of the centroidal
Voronoi tessellations that come to life in recent years,
along with more mathematical understandings and new
algorithmic advances in their efficient computation.
Some examples are presented in this paper as an illus-
tration with an emphasis on the construction of ideal
point distributions, best mode selections and optimal
spatial partitions.

1 Introduction

A centroidal Voronoi tessellation (CVT) is a Voronoi

tessellation of a given set such that the associated

generating points are centroids, i.e., the centers of

mass with respect to a given density function, of the

corresponding Voronoi regions [13].

By introducing different metrics and distances in

the definition of Voronoi regions and different notions

of centroids, CVTs may be used to find ideal distribu-

tions of generators or representatives, best selections of

modes in model reduction, and optimal partitions or

clusterings for various practical purposes. We hereby
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briefly review some of the optimal properties associated

with the CVTs defined with a standard Euclidean met-

ric and also present some variants with more general

metrics. Recent algorithmic advances in the computa-

tion of CVTs are also discussed. Several examples from

different application fields are provided, with an em-

phasis on the use of the CVTs for constructing ideal

point distributions, the best mode selections and opti-

mal spatial tessellations. These constructions are often

needed in problems ranging from data and image pro-

cessing, geometric rendering and representation, model

simplifications and reduction, to resource distribution

and allocation. It is concluded that CVTs, due to their

optimality, simplicity and universality, are becoming fa-

vorite concepts to be explored in many applications.

2 Centroidal Voronoi Tessellations

A Voronoi tessellation refers to a tessellation of a

given domain Ω ∈ RN by the Voronoi regions {Vi}k
i=1

associated with a set of given generating points or

generators {zi}k
i=1 ⊂ Ω [39]. For each i, {Vi}k

i=1 consists

of all points in the domain Ω that are closer to zi than

to all the other generating points.

For a given density function ρ defined on Ω, we may

define the centroids, or mass centers, of regions {Vi}k
i=1

by

z∗i =
∫

Vi

yρ(y) dy/

∫
Vi

ρ(y) dy .

Then, a centroidal Voronoi tessellation (CVT) refers to

a Voronoi tessellation for which the generators them-

selves are the centroids of their respective Voronoi re-

gions, that is, zi = z∗i for all i. We refer to [13] for a

more comprehensive review of the mathematical theory



and diverse applications of CVTs.

In the simple geometric setting of Euclidean spaces,

CVTs often give very special and elegant tessellations.

In figure 1, a two dimensional example using the stan-

dard Euclidean distance and the constant density is

shown.

CVT is not merely a simple geometric concept,

it can be extended to more general settings, includ-

ing abstract sets and spaces, and more general metrics.

They have a variety of applications including data com-

pression, image compression, optimal allocations of re-

sources, territorial behavior of animals, optimal sensor

and actuator location, and numerical analysis including

both grid-based and meshfree algorithms for interpola-

tion, multi-dimensional integration, and partial differ-

ential equations; see [5, 4, 6, 7, 8, 10, 12, 13, 14, 15, 16,

18, 20, 21, 22, 23, 26, 27, 30, 33, 34, 38, 39, 43, 45, 46].

Figure 1: An illustration of CVTs (having 7 and
10 clusters respectively) in a square with a constant
density.

Given a discrete set of points W = {xj}n
j=1 belong-

ing to RN , we define the error with respect to a tessella-

tion {Vi}k
i=1 of W and a set of points {zi}k

i=1 belonging

to W or, more generally, belonging to RN by

F
(
(zi, Vi), i = 1, . . . , k

)
=

k∑
i=1

∑
y∈Vi

ρ(y)|y − zi|2 .

It can be shown that a necessary condition for the error

F to be minimized is that the pair {zi, Vi}k
i=1 form a

CVT of W . We note that the above error is also often

referred to as the variance, cost, distortion error, or

mean square error.

CVTs need not be the global energy minimizers of

the error functional as some may actually be saddle

points. In our discussion, we largely are only concerned

with optimal CVTs which refer to the minimizers of

the error functional F . The optimality may often be

translated into superior properties of the tessellation of

the space and the spatial distributions of the generators,

thus, optimal CVTs are becoming favorites in many

applications.

The optimal CVTs of discrete sets are closely re-

lated to optimal k-means clusters and Voronoi regions

and centroids are referred to as clusters and cluster cen-

ters, respectively. Clustering analysis provides a selec-

tion of a finite collection of templates that well repre-

sent, in some sense, a large collection of data as illus-

trated in [13]. It can be shown that, using the variance-

based criteria to define optimality, the optimal cluster-

ing corresponds to a centroidal Voronoi tessellation.

3 Variants of CVTs

A number of variants of CVTs have been studied in

recent years, which were used in different applications.

One particular variant is given by the constrained

CVTs where the generators and the Voronoi regions

are confined to a general Riemannian manifold M

embedded in the Euclidean space Rd. The metric,

however, is still taken as the standard metric of Rd.

Systematic development of such constrained CVTs as

well as algorithms for the constructions have been given

in [16]. Extending the concept to general metric, in [22],

anisotropic CVTs have been defined corresponding to a

Riemannian metric tensor. The key is to define a one-

sided distance function in the definition of the Voronoi

regions, which allows their simple computation. In more

detail, given a Riemannian matrix metric tensor M , the

directional distance from a point ~Q to another point ~P :

dP (~P , ~Q) =
√−−→

PQT M(~P )
−−→
PQ .

The use of such a distances bypasses the need of

computing the geodesic distance corresponding to the



Riemannian metric. The anisotropic Voronoi region of

a point zi (with respect to the generator set {zj} in Ω)

is defined as:

Vi = {x ∈ Ω | dx(x, zi) < dx(x, zj) ∀ zj 6= zi}.

The mass centroids are obtained straightforwardly

through the minimization of a quadratic error function

in Vi:

F (y) =
∫

Vi

d2
x(x,y)dx .

Once the AVRs and their mass centers are defined, the

anisotropic centroidal Voronoi tessellation (ACVT) can

then be defined [22], similar to the conventional CVTs.

Another variant of the CVTs, the mixture model

based CVT, has been considered by coupling CVT with

the classical EM algorithm in [26]. A distinctive feature

of mixture model based CVTs lies in the automated

construction of the anisotropic metric tensor through

the available data points. This metric tensor defines

the mixture model that describes the underlying sam-

ple distributions. Similar extensions were made to de-

fine CVTs for both continuous and discrete vector fields

defined in an Euclidean domain or on a general Rieman-

nian manifold [27]. Using ~P = (xp,yp) and ~Q = (xq,yq)

denote two vectors yp and yq at positions xp and xq

with |yq| = 1, the one-sided distance used in [27] is

given by:

dp(~P , ~Q) =
√
|yp|2 − |yp|yp · yq + w|yp|2|xp − xq|2 .

Here, w is a constant scaling factor that serves to

balance the emphasis on the variation of the vector fields

with respect to the spatial distributions. For a given

non-uniformly distributed vector fields with a density

distribution ρ(xp), a centroid ~m = (xm,ym) of a spatial

region C is given by the minimizer of the mean distance

square:

E(~m,C) =
∫

C

ρ(xp)d2
p(~P , ~m) dxp .

The Voronoi regions and the CVTs may thus be defined

accordingly [27]. An application of the CVT based

vector field clustering and simplification is illustrated

in figure 2.

These variants are useful in the application of CVTs

to surface and anisotropic mesh generations, vector field

clustering and simplifications. Naturally, one may also

consider CVTs for additive and multiplicative Voronoi

tessellations.

4 Algorithms for CVTs

In the vector quantization literature, CVTs give rise

to the optimal vector quantizers. In the seminal work

of Lloyd on the least square quantization [35], one of

the algorithms proposed for computing optimal vector

quantizers is an iterative algorithm consisting of the fol-

lowing simple steps: starting from an initial quantiza-

tion (a Voronoi tessellation corresponding to an old set

of generators), a new set of generators is defined by

the mass centers of the Voronoi regions. This process

is continued until certain stopping criterion is met. It

is easy to see that the Lloyd algorithm is an energy

descent iteration of the energy functional, which gives

strong indications to its practical convergence, we refer

to [12] for some discussion on the recent development of

a rigorous convergence theory. In particular, the global

convergence of the Lloyd iteration has been established

for any density functions in the one-dimensional case.

Results on convergence of subsequences have also been

given there.

Lloyd’s algorithms and their variants have been pro-

posed and studied in many contexts for different appli-

cations [29, 33]. For modern applications of the CVT

concept in large scale scientific and engineering prob-

lems such as data communication and mesh generation,

efficient algorithms for computing the CVTs play crucial

roles. In recent works, we examined a number of differ-

ent approaches to speed up the convergence of Lloyd

iteration.

In [10], the direct application of the Newton method

has been studied and a hybrid Lloyd-Newton scheme

has also been proposed. The fast local quadratic
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convergence of the Newton iteration acts to accelerate

the convergence of the original Lloyd’s method. The

robustness and the energy descent property of the

Lloyd’s algorithm, meanwhile, serve to provide good

starting point for the Newton’ method. Both analytical

and numerical results on the hybrid scheme have been

given in [10].

The ideas of multilevel algorithms have been ex-

plored in [10] and [11] recently. Two main strategies

have been proposed for applying them in the nonlin-

ear optimization context with one being a full nonlin-

ear multilevel construction and another one combin-

ing a linearization outer iteration and an inner linear

multilevel iteration. The multilevel scheme is imple-

mented through a hierarchical space decomposition and

the minimization of the error functional with subspace

corrections. The main characteristics of such schemes,

such as the dynamic nonlinear preconditioning and uni-

form convergence with respect to the problem size, have

been discussed and some numerical results demonstrat-

ing its superiority over traditional methods have been

provided [10, 11].

For probabilistic type of methods, the classical Mac-

Queen’s method [37], is a very elegant random sequential

sampling method for the computation of CVTs. A gen-

eralization of MacQueen’s method given in [33] for the

probabilistic construction of CVTs provides motivations

to the algorithms studied in [26]. The new algorithms

in [26] may also be viewed as stochastic implementation

of the Lloyd’s algorithm with an automated estimation

of the metric tensor in the context of the EM methods.

5 Applications of CVTs: some examples

CVTs have diverse application as outlined earlier. As

an illustration, we present some applications of optimal

CVTs, with an emphasis on ideal point distributions,

best mode selections and optimal spatial tessellations

and triangulations.

In figure 2, some examples of using CVTs for vector

field simplification and representation are presented.

Figure 2: Simplified vector field representation based on
the CVTs: 2d and 3d examples.

Figure 3: CVT based image analysis: processed image
(right) based on images from a two-channel input.

The CVTs are characterized by the one sided distance

and the centroid concept introduced in the section 3.

They are produced for the analysis of complex flow fields

[26].

CVTs have also been applied to image segmenta-

tion, thresholding, color compression. For example,

the color compression problem can be formulated as to

find the optimal distribution of the representative col-

ors (among all the colors in the image) and to find the

optimal tessellation of the set of colors which are used

to define color replacement rules [13]. In figure 3, we

present an example of CVT based multi-channel image

segmentation and restoration [18]. Here, two stained

copies of the same text image (the Chinese name of one

of the authors) are given as a two-channel input, CVTs

are then defined for vectors which represent the colors in

both of these two images. The optimal clustering gives

to an image whose colors try to be the common colors

in both images and thus allows us to remove the stains

and recognizes the original Chinese characters.

In figure 4, CVTs constrained to the sphere as de-



Figure 4: Constrained spherical CVTs with uniform and
nonuniform densities [16].

fined in [16] are presented. The optimal CVTs corre-

sponding to a constant density gave a nearly uniform

tessellation of the sphere. Moreover, optimal CVTs in

general have been used in mesh generation and opti-

mization [14, 22, 23]. The Delaunay triangulations are

the duals of Voronoi tessellations, thus, optimal Delau-

nay triangulations may result from optimal CVTs. On

the sphere, it is known that no perfectly uniform trian-

gulations exist on the sphere in general, but the dual

of the optimal CVTs on sphere gives a nearly uniform

triangulation. Let us also give another example for a

two dimensional square. In figure 5, a comparison of

a Delaunay triangulation based on a uniformly sampled

vertices with that based on a CVT is compared. In [20],

it has been shown that the finite volume scheme for the

convection diffusion equation based on the CVTs and

their dual Delaunay triangulations has higher order ac-

curacy than that based on a generic pair of Voronoi

tessellation and Delaunay triangulation.

The proper orthogonal decompositions (POD) have

been used to systematically extract the most energetic

modes in the study of complex dynamic systems. POD

is closely related to the statistical method known as

Karhunen-Loève analysis or the method of empirical

orthogonal eigenfunctions, and it is intimately asso-

ciated with the more well-known concept of singular

value decomposition. There have been many studies de-

voted to the use of POD for obtaining low-dimensional

dynamical system approximations; see, for example

Figure 5: Delaunay triangulations with uniformly sam-
pled vertices and CVT generated vertices [14].

[2, 3, 9, 28, 31, 32, 36, 40, 41, 42, 44]. While having

no assurance to success, the popularity of POD analysis

is mostly due to its simplicity. In [15], a new clustering

approach was introduced by combining the POD with

CVTs into a hybrid method for model reduction. The

optimality of such an approach and various practical

implementation strategies have also been discussed.

In the proper orthogonal decompositions (POD)

technique, dominant features from experimental or nu-

merical data are extracted through a set of orthogonal

basis functions which are related to the eigenfunctions

of the correlation matrix of the data. More specifically,

for n vectors (which are commonly called snapshots)

x̃j ∈ RN , j = 1, . . . , n, let {xj = x̃j − µ̃}n
j=1 be a set of

modified snapshots where µ̃ = (
∑n

j=1 x̃j)/n. Let d ≤ n,

the POD basis {φi}d
i=1 of cardinality d is then found by
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successively solving

λi = max
‖φi‖=1

1
n

n∑
j=1

|φT
i xj |2 and φT

i φ` = 0

for ` ≤ i−1 and i = 1, . . . , d. Here, we will only consider

the case n < N .

The POD basis is optimal in the following sense

[31]: let {ψi}n
i=1 denote an arbitrary orthonormal basis

for the span of the modified snapshot set {xj}n
j=1.

Let Pψ,dxj be the projection of xj in the subspace

spanned by {ψi}d
i=1 and let the error be defined by

E =
∑n

j=1 ‖xj −Pψ,dxj‖2. Then, the minimum error is

obtained when ψi = φi for i = 1, . . . , d, i.e., when the

ψi’s are the POD basis vectors.

To combine the CVT concept with POD, we again

essentially need to specify the two ingredients in the

definition of CVTs: distances and centroids. The gen-

erators themselves are selected modes or basis functions.

First, the square of the distance from a one di-

mensional subspace spanned by a vector x to a d-

dimensional subspace Z is defined in conventional term:

δ2(x,Z) = 1− 1
‖x‖2

d∑
i=1

|xTθi|2 ,

where {θi}d
i=1 forms an orthonormal basis for Z. Then,

given a set of vectors (e.g., modified snapshots) W =

{xj}n
j=1 and a set of d-dimensional subspaces {Zi}k

i=1

(which are the generators), we define the generalized

Voronoi tessellation of W by

Vi = {xj ∈ W | δ2(xj ,Zi) ≤ δ2(xj ,Z`) ∀ ` 6= i }

for i = 1, . . . , k.

Second, given a set of vectors V = {xj} that span an

m-dimensional subspace of RN , the generalized centroid

of V may be defined by an orthonormal basis {φi}d
i=1

which minimizes

D =
∑
xj∈V

‖xj − Pxj‖2 ,

where P denotes the projection operator into the d-

dimensional subspace spanned by {φi}d
i=1. The optimal

basis {φi}d
i=1 is in fact the d-dimensional POD basis for

the set V. Moreover, the generators {Zj} need not have

the same cardinality for different subspaces. Thus, we

use d = {di}k
i=1 to denote a multi-index.

If a set of finite subspaces {Zj}k
i=1 with dimen-

sions d = {di}k
i=1, respectively, along with the corre-

sponding generalized Voronoi tessellation {Vj}k
i=1 is a

CVT (i.e., the Zi’s are themselves the centroids of the

Vi’s), then the union of basis vectors corresponding to

the CVT is called a centroidal Voronoi orthogonal de-

composition (CVOD) [15]. CVOD can be viewed as

an optimal basis or mode selection procedure. It is a

generalization of CVT for which the set W of modi-

fied snapshots is divided into k clusters or generalized

Voronoi regions {Vi}k
i=1 and for which the generators

are di-dimensional spaces and each of which is spanned

by the di-dimensional POD basis inside the same clus-

ter. CVOD is also a generalization of POD in the sense

that the set of modified snapshots is first divided into k

clusters and a POD basis is separately determined for

each cluster. If di = 1 for i = 1, . . . , k, CVOD reduces

to the standard CVT, while if k = 1, CVOD educes to

the standard POD.

Since a nonuniform density function can be used

in the standard CVT construction, we may also define

the weighted CVOD with a prescribed discrete density

or a set of weights, i.e., for a density function ρ with

{ρ(xj) = ρj}n
j=1, the more general CVOD minimizes

the functional

G({Zi,Vi}) =
k∑

i=1

∑
xj∈Vi

ρjδ
2(xj ,Zi) =

k∑
i=1

|Vi|
|Vi|∑

j=di+1

λij

where |Vi| denotes the cardinality of the Voronoi set or

cluster Vi and the λij ’s are the eigenvalues (in decreasing

order) of the (weighted) local correlation matrix of the

snapshots in the cluster.

Once a reduced set of modes or a reduced basis

is obtained, either by POD or CVT or CVOD, it can

be used to define a low-order model for a complex

system in a more automated fashion. For instance, let



F (t, X, u(X, t)) = 0 be a system of partial differential

equations with suitable boundary and/or initial con-

ditions for the unknown function u and some system

parameter t. The CVOD based model reduction is

performed as follows.

Algorithm: CVOD based model reduction

1 Construct a set of modified snapshots {uj}n
1 by

solving F (t, X, u(X, t)) = 0 for different t.

2 Calculate the CVOD for the set {uj}n
1 for some

integer k and multi-index {dj}k
j=1 to obtain a set

of CVOD basis vectors {φm}|d|m=1.

3 For 1 ≤ m ≤ |d|, solve the reduced system〈
φm, F (t, X,

∑|d|
l=1 βlφl)

〉
= 0 with a suitable in-

ner product.

The above procedures has been applied to fluid con-

trol problems [5] and problems in homogenization. Let

us consider a hypothetical setting where a two dimen-

sional Possion equation with a highly oscillatory dif-

fusion coefficient and homogeneous Dirichlet boundary

condition appears as a state equation that needs to be

numerically solved with many different right hand side

functions. Due to the oscillation in the coefficient, the

solutions of the PDEs in general exhibit very complex

behavior thus demand detailed resolution with a fine

grid. However, it is likely that for a large class of smooth

right hand side functions, the corresponding solutions

are highly clustered and stay in a relatively low dimen-

sional space. One may take some solutions already com-

puted as snapshots and perform the CVOD model re-

duction so that new solutions can be computed with the

reduced basis when the equations are to be solved again.

The computed solutions can be very good approxima-

tions to those computed directly with a fine grid but the

latter comes at much higher computational cost. An ex-

ample of this is given in figure 6 where the computed

numerical solution using a reduced CVOD basis with

four generators is shown along with the error between

Figure 6: A solution for a two dimensional homogeniza-
tion problem computed with 4 CVOD basis and the
error between it and the fine grid solution.

it and the solution computed on a much finer grid. Ap-

plications of CVOD in MD and ab-initio simulations are

now also under investigation.

The advantage of CVOD over POD is that POD

mostly is a linear decomposition technique, CVOD is on

the other hand nonlinear in nature and it introduces the

concept of clustering into the decomposition. CVOD

also reduces the amount of work relative to the full POD

analysis. POD involves the solution of an n × n eigen-

problem, where n is the number of snapshots; CVOD in-

stead requires the solution of several smaller eigenprob-

lems. Yet, one of the most important features of CVOD

lies also in its universality and simplicity, it can be de-

veloped as an on-line toolbox that can constantly probe

the computation results and seek for clustering patterns

and identifying dominant modes. This serves the goal

of manifold learning, model reduction and knowledge

discovery. For complex dynamic systems, how to effi-
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ciently compute the CVOD dynamically through some

adaptive and hierarchical processes becomes important.

In this regard, the recent works on multilevel methods

for computing the CVTs [10] hold great promises.

6 Conclusion

Centroidal Voronoi Tessellations are useful mathemat-

ical concepts and practical tools. They are simple, as

the definitions are easy to describe; they are universal,

as they appear in various context; they are progressive,

as iterative algorithms provide a gradual construction

of CVTs and result in improvement of the tessellation

and point distribution; and best of all, they are opti-

mal, as they minimizes error functionals, variances and

distortion measures.

In this paper, the basic concepts of CVTs are

described and some recent algorithmic advances of

CVTs are discussed. Drawing from our recent works,

several examples of applications are presented. When

the number of generators becomes large, it has been

conjectured [13] that CVT’s enjoys the equi-partition

of error property, following the celebrated Gersho’s

conjecture [25]; it is natural to extend such a conjecture

to CVOD. Such an error equi-partition property may be

explored in future works to find adaptive strategies for

the construction of CVTs. Finally, we are surely going

to see more and more new and exciting applications of

CVTs in the future.
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Karhunen-Lóeve decomposition, Comp. Chem. Engng.,
20 (1996), 495–506.

[29] R. Gray and D. Neuhoff, Quantization, IEEE
Trans. Inform. Theory, 44 (1998), 2325–2383.

[30] S. Hiller, H. Hellwig and O. Deussen, Beyond
stippling - Methods for distributing objects on the
plane, Computer Graphics Forum, 22 (2003), 515-522.

[31] P. Holmes, J. Lumley, and G. Berkooz, Turbu-
lence, Coherent Structures, Dynamical Systems and
Symmetry, Cambridge University Press, Cambridge,
(1996).

[32] P. Holmes, J. Lumley, G. Berkooz, J. Mattingly,
and R. Wittenberg, Low-dimensional models of

coherent structures in turbulence, Phys. Rep., 287
(1997), 337–384.

[33] L. Ju, Q. Du, and M. Gunzburger, Probablis-
tic methods for centroidal Voronoi tessellations and
their parallel implementations, Parallel Computing, 28
(2002), 1477–1500.

[34] T. Kanungo, D. Mount, N. Netanyahu, C. Pi-
atko, R. Silverman, and A. Wu, An efficient k-
means clustering algorithm: Analysis and implementa-
tion, IEEE Trans. Pattern Analysis and Machine In-
telligence, 24 (2002), 881-892.

[35] S. Lloyd; Least squares quantization in PCM, IEEE
Trans. Infor. Theory, 28 (1982), 129–137.

[36] J. Lumley, Stochastic Tools in Turbulence, Academic,
New York, (1971).

[37] J. MacQueen; Some methods for classification and
analysis of multivariate observations, in Proc. 5th
Berkeley Symposium on Math. Stat. and Prob. I, 1967,
pp. 281–297.

[38] A. Mendes and I. Themido, Multi-outlet retail site
location assessment. Inter. Trans. in Operational Re-
search, 11 (2004), 1-18.

[39] A. Okabe, B. Boots, K. Sugihara, and S. Chiu,
Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams, 2nd edition, Wiley, Chichester,
(2000).

[40] M. Rathinam and L. Petzold, A new look at proper
orthogonal decomposition, SIAM J. Numer. Anal., 41
(2003), 1893-1925.

[41] S. Ravindran, Proper orthogonal decomposition in
optimal control of fluids, Int. J. Numer. Meth. Fluids,
34 (2000), 425–448.

[42] N. Smaoui and D. Armbruster, Symmetry and the
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