
NAME (print legibly - 2pts): KEY

Math 321 Spring 2016—Exam 2

Instructor: J. Shapiro

Please work neatly and answer the problems in the space provided. Remember, I cannot
grade what I cannot read! Print your name at the top.

1. The following questions are short answer, requiring only a brief justification (but there[28pts]
must be some!):

(a) Suppose that ϕ is a homomorphism from Z30 to Z30 where Ker ϕ = {0, 10, 20}. If
ϕ(23) = 9, determine all elements that map to 9.

23+ ker ϕ = ϕ−1(9). Then
23+ ker ϕ = {23, 33 = 3, 43 = 13} = {23, 3, 13}.

(b) Let H and K be subgroups of a group G such that |H| = 30 and |K| = 42. What
are the possible orders of H ∩K?

By Lagrange, |H∩K| divides |H| = 30 and |K| = 42. The common divisors
of these numbers are 1, 2, 6.

(c) What is the order of the element 4 + 〈6〉 in the factor group Z24/〈6〉?

We want the smallest integer n such that n · 4 is in the subgroup of Z24

generated by 6. Clearly 〈6〉 = {0, 6, 12, 18}. So the smallest multiple of 4
that is in that set is 3. Hence the order of the element is 3.

(d) Let ϕ : Z6 −→ S5 be a group homomorphism such that ϕ(1) = (1, 2, 3)(4, 5). What
is ϕ(3)?

Since 3 = 3 · 1, and since ϕ is a group homomorphism, we have ϕ(3) =
[(1, 2, 3)(4, 5)]3. Since the permutations are disjoint, we have [(1, 2, 3)(4, 5)]3 =
(1, 2, 3)3(4, 5)3 = (1)(4, 5).



2. In the group Z10 × S4, let a be the element (3, (1 2 4)).[16pts]

(a) Find |a|.

In Z10, |3| = 10, since 3 is relatively prime to 10, while the order of (1 2 4)
is three. Thus the order of a is lcm(10,3) = 30.

(b) Find a−1.

To compute a−1, we compute the inverse of each coordinate. Thus a−1 =
(7, (1 4 2).

3. Show that any group of order 12 has an element of order 2.[10pt]

By Lagrange, every element of G must have order either 1, 2, 3, 4, 6, or 12.
If there exists an element a ∈ G that has order 2, 4, 6 or 12, then clearly
the appropriate power of a will have order 2 and we are done. Hence we
assume that every element (other than the identity) has order 3 and arrive a
contradiction.

Let a have order 3, and let H1 = 〈a〉. So |H1| = 3. Pick b ∈ G \ H1 and let
H2 = 〈b〉. Then H1 ∩H2 has only the identity element. Hence H1 ∪H2 has 5
elements. Now pick c ∈ G \ (H1 ∪H2) and let H3 = 〈c〉. In this way we keep
adding 2 new elements. Since we started with 3, we can never reach exactly
12 elements. Hence we have the desired contradiction.



4. Explain why the groups D4 (the group of symmetries of the square) and Q = {±1,±i,±j,±k}[10pts]
(the quarternions) are not isomorphic.

Note that D4 has exactly 2 elements of order 4, namely R90 and R270. On the
other hand Q has 6 elements of order 2, namely {±i,±j,±k}. So the groups
cannot be isomorphic.

5. Let G = S3 × Z2.[16pts]

(a) Let H be the subgroup of G generated by ((1 2), 1). List the elements of H. (Cau-
tion: The first coordinate is multiplicative, while the second is additive.)

Since both coordinates of this element have order 2, the element itself has
order 2. Thus

H = {((1), 0), ((1 2), 1)}

(b) Write the left cosets of H in G.

There must be 12/2 = 6 distinct cosets. Besides H, they are
((1 2), 0) ∗H = {(1, 2), 0), ((1), 1)},
((1 3), 0) ∗H = {(1 3), 0), ((1 2 3), 1)},
((1 3), 1) ∗H = {((1 3), 1), ((1 2 3), 0)},
((2 3), 0) ∗H = {((2 3), 0), ((1 3 2), 1)},
((2 3), 1) ∗H = {((2 3), 1), ((1 3 2), 0)}



6. Let R∗ denote the group of non-zero reals under multiplication.[18pts]

(a) Let R+ denote the subgroup of R∗ consisting of the positive reals. Show that R+

has index 2 in R∗ (i.e., there are exactly two cosets of R+ in R∗).

One coset is R#, another is (−1)R#. Clearly the union of these two sets is
all of R∗. Hence there are precisely two cosets, so the subgroup has index
2.

(b) Let H be any subgroup of R∗ that has index 2. Show that for any a ∈ R∗, a2 ∈ H.
(Hint: What is the order of the quotient group G/H, and how does that help?)

Clearly H is a normal subgroup, since the group is abelian. Thus the
quotient group R∗/H has order two. This means that any coset squared is
the identity coset, i.e., (aH)2 = H or a2 ∈ H for all elements a ∈ R∗.

(c) Deduce that any subgroup of R∗ having index 2 must contain R+ and hence must
equal R+.

Let H be any subgroup of index 2. By part (b) the square of any element is
in H. Since every positive real is the square of some number (a = (

√
a)2),

we see that H must contain R+. But this group already has index 2 and
any bigger subgroup would have index 1, i.e., would equal R∗, so H = R+


