NAME (print): Answer Key Math 321 Spring 2016—Exam 1

Instructor: J. Shapiro

Please work neatly and write complete answers in the space provided. (If you cannot fit it into that space, point me to your work.) Remember I cannot grade what I cannot read!

- [40pts] 1. The following are short answer, requiring only a brief response.
 - (a) If a, b, and c are elements of a group and |a| = 6, |b| = 7, express $(a^4c^{-2}b^4)^{-1}$ without using negative exponents.

Since $a^6 = e$, $(a^4)^{-1} = a^2$. Similarly $(b^4)^{-1} = b^3$. Thus $(a^4c^{-2}b^4)^{-1} = (b^4)^{-1}c^2(a^4)^{-1} = b^3c^2a^2$

(b) Let $a, b \in G$, G any group and let H be a subgroup of $\langle a \rangle \cap \langle b \rangle$. If |a| = 20 and |b| = 12, what are the possible orders of H? (Remember $\langle x \rangle$ is always cyclic.)

Note that H is a subgroup of two cyclic subgroups, $\langle a \rangle$ and $\langle b \rangle$. Hence the order of H must divide 4 and 20. Hence |H| = 1 or 2 or 4.

(c) Find the order of the element 10 in the group \mathbb{Z}_{15} .

Can use brute force: $10 + 10 = 20 = 5 \mod 15$ and $10 + 10 + 10 = 0 \mod 15$. Thus |10| = 3.

(d) Determine if $\alpha = (12)(134)(152)$ is an even or an odd permutation.

Note that α is the product of an odd with two even permutations. Thus it is an odd permutation.

(e) Why is the set $\{1, 2, 3, 4, 5\}$ under multiplication mod 6 NOT a group. There are many reasons. One is that $2 \cdot 3 = 0$ and 0 is not in the set. [10pts] 2. Let $x \in G$ (where the binary operation is multiplication) such that |x| = 20. List two elements of $\langle x \rangle$ that have order 5.

Clearly x^4 has order 5 and is in $\langle x \rangle$. We need another power of x that has order 5. If k is relatively prime to 20, then x^{k4} will also have order 5. Thus x^{12} works.

[10pts] 3. Determine if the group G = U(12) is cyclic. (Hint: First list all the elements of U(12).)

First note that $U(12) = \{1, 5, 7, 11\}$. We run through each element in the group to see if it generates the whole group. $5^2 = 25 = 1 \mod 12$; so 5 does not generate. $7^2 = 49 = 1 \mod 12$; so 7 does not generate. Finally $11^2 = 121 = 120 + 1 = 1 \mod 12$; so 11 does not generate. Hence U(12) isnot cyclic.

[10pts] 4. What are the possible orders of elements of S_5 ?

Clearly the identity has order 1. Moreover there are cycles of length 2, 3, 4, and 5 e.g., (1 2), (1 2 3), (1 2 3 4) and (1 2 3 4 5) respectively. So there are elements in S_5 of order 2, 3, 4 and 5. Finally note there is a permutation that is the product of two disjoint cycles, one of length 2 and one of length 3. Example $\alpha = (1 2)(3 4 5)$. This element has order 6. Finally note that there are no permutations in S_5 that are the product of disjoint cycles of longer length. Thus the possible orders are 1, 2, 3, 4, 5, and 6.

[10pts] 5. Let $\beta = (123)(145)$. Write β^{92} as a product of disjoint cylces. (Hint: What is the order of β ?)

First write β as a product of disjoint cycles: $\beta = (1 \ 4 \ 5 \ 2 \ 3)$. Thus $|\beta| = 5$. Hence $\beta^{92} = \beta^{90}\beta^2$. But $\beta^{90} = (\beta^5)^{18} = e^{18} = e$. Thus

$$\beta^{92} = \beta^{90}\beta^2 = \beta^2$$

Then $\beta^2 = (1 \ 4 \ 5 \ 2 \ 3)(1 \ 4 \ 5 \ 2 \ 3) = (1 \ 5 \ 3 \ 4 \ 2)$. Done.

[10pts] 6. Let G = GL(2, R) and let $H = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a \text{ and } b \text{ are nonzero integers} \right\}$. Prove or disprove that H is a subgroup of G (remember: the binary operation on G is matrix multiplication).

It is easy to check that H has an identity element and is closed under products. However it does not have inverses:

$$\left\{ \left(\begin{array}{cc} a & 0\\ 0 & b \end{array}\right)^{-1} = \left\{ \left(\begin{array}{cc} 1/a & 0\\ 0 & 1/b \end{array}\right).\right.$$

But by definition, H only contains matrices with integer entries and 1/a is not an integer. Done.

[10pts] 7. Let $a \in G$, where |a| = n. Let k be a positive integer such that $a^k = e$, the identity element of G. Prove that n divides k.

We have to use the division algorithm. Write

$$k = qn + r$$
; where $0 \le r < n$.

To show that k|n we must show that r above is equal to 0. Now we have

$$e = a^k = a^{qn+r} = a^{qn}a^r = (a^n)^q a^r = e^q a^r = a^r.$$

Thus $a^r = e$. But by definition n is the smallest positive integer such that $a^n = e$. Since r < n, we must have r = 0 - done.