1. (0.8) Let a and b be integers and let $d = \gcd(a, b)$. If a = da' and b = db', show that $\gcd(a'b') = 1$.

Proof. Let $d' = \gcd(a'b')$. Since $d = \gcd(a, b)$, there exists integers s and t such that sa + tb = d. Therefore by substition we have

$$s(da') + t(db') = d$$
 and so

$$sa' + tb' = 1.$$

Since by assumption $d' \mid a'$ and $d' \mid b'$, we have $d' \mid 1$. Hence d' = 1.

2. (0.19) Show that gcd(a, bc) = 1 if and only if gcd(a, b) = 1 and gcd(a, c) = 1.

Proof. Suppose that gcd(a, bc) = 1 and let gcd(a, b) = d. Thus d divides a and b. Hence d divides a and bc. Therefore d = 1. Similarly gcd(a, c) = 1.

Conversely, suppose that gcd(a, b) = 1 = gcd(a, c). Now assume that gcd(a, bc) = d > 1and we will arrive at a contradiction. Let p be a prime divisor of d. Thus p divides aand p divides bc. By Euclid's Lemma, p divides either b or c. In the former case, p is a common divisor of both a and b. In the latter it is a common divisor of both a and c. In either case we have a contradiction that proves gcd(a, bc) = 1.

3. (2.16) Show that the set $\{5, 15, 25, 35\}$ is a group under multiplication modulo 40. Can you see any relationship between this group and U(8)?

Proof. Since this is the usual multiplication of integers, one does not have to check associativity. Next, we have to make sure that the set is closed under multiplication.

$$5 \cdot 5 = 25, 5 \cdot 15 = 75 \equiv 35, 5 \cdot 25 = 125 \equiv 5, 5 \cdot 35 = 175 \equiv 15$$
$$15 \cdot 15 = 225 \equiv 25, 15 \cdot 25 = 375 \equiv 15, 15 \cdot 35 = 525 \equiv 5$$
$$25 \cdot 25 = 625 \equiv 25, 25 \cdot 35 = 875 \equiv 35 \text{ and } 35 \cdot 35 = 1225 \equiv 25.$$

Thus the set is closed under multiplication. We also see that 25 is the identity element, and each element is its own inverse. Thus the set forms a group.

We have that $U(8) = \{1, 3, 5, 7\}$. This group also has 4 elements and one checks each element is its own inverse, i.e., $x^2 = 1$ for all $x \in U(8)$!

4. (2.34) Prove that in a group $(ab)^2 = a^2b^2$ if and only if ab = ba.

Proof. First suppose that ab = ba. Now multiple on the left by a and on the right b, which gives

$$a^{2}b^{2} = a(ab)b = abab$$
 or $a^{2}b^{2} = (ab)(ab) = (ab)^{2}$

Conversely, suppose that $(ab)^2 = a^2b^2$. Multiple this equation on the left by a^{-1} and on the right by b^{-1} . The left hand side is

$$a^{-1}[(ab)^2]b^{-1} = a^{-1}[(ab)(ab)]b^{-1} = ba.$$

While the right hand side is

$$a^{-1}(aabb)b^{-1)} = ab.$$

This proves this direction.