1. (0.8) Let a and b be integers and let $d=\operatorname{gcd}(a, b)$. If $a=d a^{\prime}$ and $b=d b^{\prime}$, show that $\operatorname{gcd}\left(a^{\prime} b^{\prime}\right)=1$.

Proof. Let $d^{\prime}=\operatorname{gcd}\left(a^{\prime} b^{\prime}\right)$. Since $d=\operatorname{gcd}(a, b)$, there exists integers s and t such that $s a+t b=d$. Therefore by substition we have

$$
\begin{gathered}
s\left(d a^{\prime}\right)+t\left(d b^{\prime}\right)=d \text { and so } \\
s a^{\prime}+t b^{\prime}=1 .
\end{gathered}
$$

Since by assumption $d^{\prime} \mid a^{\prime}$ and $d^{\prime} \mid b^{\prime}$, we have $d^{\prime} \mid 1$. Hence $d^{\prime}=1$.
2. (0.19) Show that $\operatorname{gcd}(a, b c)=1$ if and only if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$.

Proof. Suppose that $\operatorname{gcd}(a, b c)=1$ and let $\operatorname{gcd}(a, b)=d$. Thus d divides a and b. Hence d divides a and $b c$. Therefore $d=1$. Similarly $\operatorname{gcd}(a, c)=1$.
Conversely, suppose that $\operatorname{gcd}(a, b)=1=\operatorname{gcd}(a, c)$. Now assume that $\operatorname{gcd}(a, b c)=d>1$ and we will arrive at a contradiction. Let p be a prime divisor of d. Thus p divides a and p divides $b c$. By Euclid's Lemma, p divides either b or c. In the former case, p is a common divisor of both a and b. In the latter it is a common divisor of both a and c. In either case we have a contradiction that proves $\operatorname{gcd}(a, b c)=1$.
3. (2.16) Show that the set $\{5,15,25,35\}$ is a group under multiplication modulo 40 . Can you see any relationship between this group and $U(8)$?

Proof. Since this is the usual multiplication of integers, one does not have to check associativity. Next, we have to make sure that the set is closed under multiplication.

$$
\begin{gathered}
5 \cdot 5=25,5 \cdot 15=75 \equiv 35,5 \cdot 25=125 \equiv 5,5 \cdot 35=175 \equiv 15 \\
15 \cdot 15=225 \equiv 25,15 \cdot 25=375 \equiv 15,15 \cdot 35=525 \equiv 5 \\
25 \cdot 25=625 \equiv 25,25 \cdot 35=875 \equiv 35 \text { and } 35 \cdot 35=1225 \equiv 25 .
\end{gathered}
$$

Thus the set is closed under multiplication. We also see that 25 is the identity element, and each element is its own inverse. Thus the set forms a group.

We have that $U(8)=\{1,3,5,7\}$. This group also has 4 elements and one checks each element is its own inverse, i.e., $x^{2}=1$ for all $x \in U(8)$!
4. (2.34) Prove that in a group $(a b)^{2}=a^{2} b^{2}$ if and only if $a b=b a$.

Proof. First suppose that $a b=b a$. Now multiple on the left by a and on the right b, which gives

$$
a^{2} b^{2}=a(a b) b=a b a b \text { or } a^{2} b^{2}=(a b)(a b)=(a b)^{2}
$$

Conversely, suppose that $(a b)^{2}=a^{2} b^{2}$. Multiple this equation on the left by a^{-1} and on the right by b^{-1}. The left hand side is

$$
a^{-1}\left[(a b)^{2}\right] b^{-1}=a^{-1}[(a b)(a b)] b^{-1}=b a .
$$

While the right hand side is

$$
a^{-1}(a a b b) b^{-1)}=a b .
$$

This proves this direction.

