Math 621 HW #4 (Corrected) – Due Wednesday, March 9.

[8pts] 1. Let G be a group.

 (a) Show that if every $a \in G$ satisfies $a^2 = 1$, then G is abelian.

 (b) Show that every group of order 5 or less is abelian.

[6pts] 2. Let N be the subset of S_4 define as:

 $$N := \{(1), (12)(34), (13)(24), (14)(23)\}.$$

 Then N is a subgroup of A_4 - you do not have to prove this! (The only proof of this I see is brute force.) Show that N is the only non-cyclic subgroup of A_4 or order four. Then show that N is a normal subgroup of both S_4 and A_4.

Additional Problems:

Sec. 3.4: 5
Sec. 3.5: 3, 14, 15
Sec. 4.3: 2, 5, 10, 25