HW #10

- 1. An abelian group G (under addition) is called an *ordered group* if the there is a total ordering on the elements of G such that if $x \leq y$, then $a + x \leq b + x$ for all $x, y, z \in G$. Let K be a field. A valuation on K is an onto map $v : K^{\times} \to G$, where G is an ordered group, such that
 - i) v(ab) = v(a) + v(b) (i.e., v is a group homomorphism.)
 - ii) $v(x+y) \ge \min\{v(x), v(y)\}$ for all $x, y \in K^{\times}$ with $x+y \ne 0$.

Let $R_v = \{x \in K : v(x) \ge 0\}$. Then R is a subring of K. You do not have to prove this (the proof is exactly the same as for a discrete valuation.) Moreover the units of R_v are the elements $\{x \in R_v : v(x) = 0\}$ (also same proof).

(a) Show that the set $M = \{x \in R_v : v(x) > 0\}$ is a maximal ideal of R_v and the only maximal ideal of this ring.

2. Let G = Z × Z with the lexicographic or dictionary ordering. Thus (a,b) > (c,d) if a > c or if a = c and b > d. This is how words in the dictionary are totaly ordered. So for example (1,-5) > (0,10). Let S = Q[x,y]. Let K be the quotient field of S, i.e., all rational polynomials in two variables, with coefficients in Q. We will define a valuation v on K to G, by first defining it on S. First for a monomial qxⁱy^j ∈ S (q ∈ Q), we set v(qxⁱy^j) = (i, j). For arbitrary f(x, y) ∈ S, f is of course a sum of monomials g_k. We define v(f) = min{v(g_j)}. Thus if f = x³y⁴ + 5x²y⁷, then v(f) = min{v(x³y⁴), v(5x²y⁷)} = min{(3,4), (2,7)} = (2,7). Now extend v to all of K by defining v(f/h) = v(f) - v(h). One checks that this defines a valuation on K. You should convince yourself that this is true, but you do not have to hand in a proof of this (it is too tedious). The ring R_v is a subring of K that clearly contains S, but it is bigger than S.

(b) Determine if the following elements are in R_v : $(x^2 + y^3)/(x + y^4), \qquad (x^3 + x^2y^2)/(xy + y^3).$

(c) Let $P = \{h \in R_v : v(h) > (0, n) \text{ for all positive integers } n\}$. Show that P is an ideal of R_v and that it cannot not be generated by finitely many elements. (Hint: For the second part note that (1, -n) > (0, n), for all $n \in \mathbb{Z}^+$.)