1. An abelian group G (under addition) is called an ordered group if the there is a total ordering on the elements of G such that if $x \leq y$, then $a+x \leq b+x$ for all $x, y, z \in G$. Let K be a field. A valuation on K is an onto map $v: K^{\times} \rightarrow G$, where G is an ordered group, such that
i) $v(a b)=v(a)+v(b)$ (i.e., v is a group homomorphism.)
ii) $v(x+y) \geq \min \{v(x), v(y)\}$ for all $x, y \in K^{\times}$with $x+y \neq 0$.

Let $R_{v}=\{x \in K: v(x) \geq 0\}$. Then R is a subring of K. You do not have to prove this (the proof is exactly the same as for a discrete valuation.) Moreover the units of R_{v} are the elements $\left\{x \in R_{v}: v(x)=\right.$ $0\}$ (also same proof).
(a) Show that the set $M=\left\{x \in R_{v}: v(x)>0\right\}$ is a maximal ideal of R_{v} and the only maximal ideal of this ring.
2. Let $G=\mathbb{Z} \times \mathbb{Z}$ with the lexicographic or dictionary ordering. Thus $(a, b)>(c, d)$ if $a>c$ or if $a=c$ and $b>d$. This is how words in the dictionary are totaly ordered. So for example $(1,-5)>(0,10)$. Let $S=\mathbb{Q}[x, y]$. Let K be the quotient field of S, i.e., all rational polynomials in two variables, with coefficients in \mathbb{Q}. We will define a valuation v on K to G, by first defining it on S. First for a monomial $q x^{i} y^{j} \in S(q \in \mathbb{Q})$, we set $v\left(q x^{i} y^{j}\right)=(i, j)$. For arbitrary $f(x, y) \in S$, f is of course a sum of monomials g_{k}. We define $v(f)=\min \left\{v\left(g_{j}\right)\right\}$. Thus if $f=x^{3} y^{4}+5 x^{2} y^{7}$, then $v(f)=\min \left\{v\left(x^{3} y^{4}\right), v\left(5 x^{2} y^{7}\right)\right\}=$ $\min \{(3,4),(2,7)\}=(2,7)$. Now extend v to all of K by defining $v(f / h)=v(f)-v(h)$. One checks that this defines a valuation on K. You should convince yourself that this is true, but you do not have to hand in a proof of this (it is too tedious). The ring R_{v} is a subring of K that clearly contains S, but it is bigger than S.
(b) Determine if the following elements are in R_{v} :
$\left(x^{2}+y^{3}\right) /\left(x+y^{4}\right), \quad\left(x^{3}+x^{2} y^{2}\right) /\left(x y+y^{3}\right)$.
(c) Let $P=\left\{h \in R_{v}: v(h)>(0, n)\right.$ for all positive integers $\left.n\right\}$. Show that P is an ideal of R_{v} and that it cannot not be generated by finitely many elements. (Hint: For the second part note that $(1,-n)>$ $(0, n)$, for all $n \in \mathbb{Z}^{+}$.)

