Instructor: Shapiro

Work carefully and neatly and remember that I cannot grade what I cannot read. You must show all relevant work in the appropriate space. You may receive no credit for a correct answer if there is insufficient supporting work. Notes, books and graphing or programable calculators are NOT ALLOWED.

- [12] 1. Each question below has a short answer.
  - (a) Let A be a  $6 \times 4$  matrix. How many free variables must A have in order for  $T_A$  to be one-to-one?

A must have zero free variables

- (b) Let A be a  $6 \times 11$  matrix. What must a and b be in order to define  $T: \mathbb{R}^a \to \mathbb{R}^b$  by T(x) = Ax?
- (c) Suppose that the matrix of the map  $T: \mathbb{R}^3 \to \mathbb{R}^2$  reduces to the matrix  $\begin{pmatrix} 1 & 5 & 0 \\ 0 & 0 & h-2 \end{pmatrix}$ . What does h have to be so that T is onto?

N-2 to on N = 2. This will ensure that every row has a pivot

[16] 2. Put each of the following augmented matrices into reduced echelon form and then describe the solution set.

$$\begin{array}{c|c}
(a) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 8 \end{pmatrix} & -1 \\
\begin{pmatrix} 1 & 0 & | -5 \\ 0 & 2 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | -5 \\ 0 & 2 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & 8 \end{pmatrix} & \frac{1}{2} \\
\begin{pmatrix} 1 & 0 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5 \\ 0 & 1 & | & -5$$

(b) 
$$\begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 2 & 6 & -8 \\ 0 & 0 & 0 & 0 \end{pmatrix} \stackrel{1}{=}$$

$$\begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \stackrel{1}{=}$$

$$\begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{c} x_1 = -3x_3 + 2 \\ x_2 = -3x_3 - 4 \\ x_3 = -6 \text{ ree} \end{pmatrix}$$

[18pts] 3. Consider the following system of equations  $\begin{array}{rcl} x_1+x_2-2x_3+3x_4&=&0\\ 2x_1+x_2+2x_3+x_4&=&0\\ -x_2+6x_3-5x_4&=&0 \end{array}$ 

(a) Find all solutions to the above system and write them in parametric vector form.

(b) Check that  $v = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$  is a solution to  $Ax = \begin{pmatrix} 0 \\ 7 \\ 7 \end{pmatrix}$ , where A is the coefficient

matrix of the above system. Then use part (a) to write all solutions in parametric vector form to the matrix equation.

$$T\left(\begin{array}{c} a\\b\\c\end{array}\right) = \left(\begin{array}{c} 2a + 3b - c\\2c - 4b\end{array}\right)$$

(b) Find the standard matrix of T.

$$A = \begin{pmatrix} 2 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

[16] 5. Determine what h has to be in each of the following sets of vectors so that the set spans  $\mathbb{R}^3$ . If no h can exist, explain why.

(a) 
$$\begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix}$$
,  $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ ,  $\begin{pmatrix} 0 \\ 1 \\ h \end{pmatrix}$ 

(b) 
$$\begin{pmatrix} -2 \\ 6 \\ 2 \end{pmatrix}$$
,  $\begin{pmatrix} 1 \\ h \\ 3 \end{pmatrix}$ 

No h can exist,
for in order to span

183, there needs to
be a pivot in
each row

6. Let 
$$A = \begin{pmatrix} 1 & 1 \\ -2 & -1 \\ -1 & -3 \end{pmatrix}$$
,  $\mathbf{y} = \begin{pmatrix} 2 \\ -5 \\ 0 \end{pmatrix}$ , and define  $T : \mathbb{R}^2 \to \mathbb{R}^3$  by  $T(\mathbf{x}) = A\mathbf{x}$ 

[10pts] (a) Determine if y is in the image of T. If it is, find an x such that T(x) = y.

[6pts] (b) Is the map T one-to-one? Why or why not?

[10pts] 7. Determine if the set 
$$A = \left\{ \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ -4 \end{pmatrix} \right\}$$
 is linearly independent.

$$\begin{pmatrix} 1 & 2 & -3 \\ 3 & 2 & 0 \\ 5 & 4 & -4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & -3/2 \\ 0 & -6 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & -3/2 \\ 0 & -6 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\ 0 & -3/2 \\$$

YES it'u mdependent