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Math 203 Spring 2014—Exam 1

Instructor: Shapiro

Work carefully and neatly and remember that I cannot grade what I cannot read. You
must show all relevant work in the appropriate space. You may receive no credit for a correct
answer if there is insufficient supporting work. Notes, books and graphing or programable
calculators are NOT ALLOWED.

[12] 1. Each question below has a short answer.

(a) Let A be a 6 x 4 matrix. How many free variables must A have in order for T4 to
be one-to-one?
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(b) Let A be a 6 x 11 matrix. What must a and b be in order to define 7' : R* — R® by
T(z) = Az?
CL= Wl P b=z &

(¢) Suppose that the matrix of the map T : R3 — R? reduces to the matrix ( é g b ?_ 5 ) .
What does h have to be so that T is onto?
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[16] 2. Put each of the following augmented matrices into reduced echelon form and then describe
the solution set.
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Ty +To—2234+3z4 = 0
[18pts] 3. Consider the following system of equations 2z, +z3+2z3+1z4 = 0
—Zo+6x3—5z4 = 0

(a) Find all solutions to the above system and write them in parametric vector form.
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(b) Check that v = g is a solution to Az = ( 7 ), where A is the coefficient
7
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matrix of the above system. Then use part (a) to write all solutions in parametric
vector form to the matrix equation.
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[12pts] 4. Let T : R® — R? be the linear transformation given by such that

a
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(a) What is T ( —g )?
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(b) Find the standard matrix of T.
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[16] 5. Determine what h has to be in each of the following sets of vectors so that the set spans
R3. If no h can exist, explain why.
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6. Let A= ( -2 -1 ),y= (—5),anddeﬁneT:]R2—>R3byT(x)=
-1 -3 0

[10pts] (a) Determine if y is in the image of T'. If it is, find an z such that T(z) =

(o] )3
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[6pts] (b) Is the map T one-to-one? Why or why not?
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[10pts] 7. Determine if the set A = { ( 3 ) , ( 2 ) , ( 0 ) } is linearly independent.
5 4 -4

e,
S e

2 -2
2 o
y -V / O - 6
lz-} ll'l




