1.3 VECTOR EQUATIONS

 \mathbb{R}^n is the collection of all lists (*ordered n-tuples*) of *n* real numbers. Example:

$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

Algebraic Properties of \mathbb{R}^n

For all **u**, **v**, **w** in \mathbb{R}^n and all scalars *c* and *d*:

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- (u + v) + w = u + (v + w)
- $\bullet \ \mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
- u + (-u) = -u + u = 0
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$

commutative property

associative property

zero vector

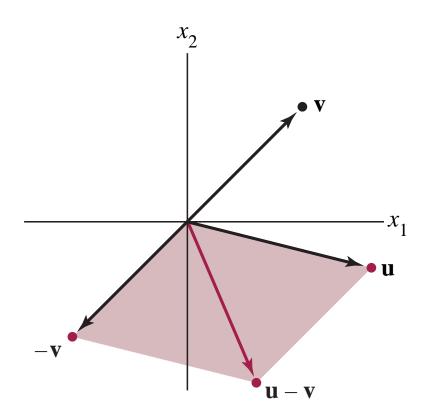
 $-\mathbf{u}$ denotes $(-1)\mathbf{u}$

distributive property

- $(c+d)\mathbf{u} + c\mathbf{u} + d\mathbf{u}$
- $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 1**u** = **u**

Vector "Subtraction"

Write $\mathbf{u} - \mathbf{v}$ in place of $\mathbf{u} + (-1)\mathbf{v}$.



Linear Combinations

For vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ in \mathbb{R}^n and scalars c_1, \ldots, c_p , the vector

$$\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$$

is called a **linear combination** of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ using weights c_1, \ldots, c_p . Examples:

$$3.5\mathbf{v}_1 + 0\mathbf{v}_2$$
 (= 3.5 \mathbf{v}_1), $0\mathbf{v}_1 + 0\mathbf{v}_2$ (= **0**)

1.3.02

Lay, Linear Algebra and Its Applications, Second Edition—Update Copyright © 2000 by Addison Wesley Longman. All rights reserved.

EXAMPLE 4 Let $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Estimate the linear combinations of \mathbf{v}_1 and \mathbf{v}_2 that generate \mathbf{u} and \mathbf{w} .

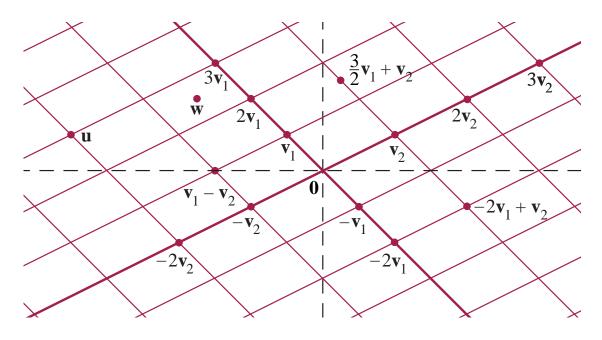
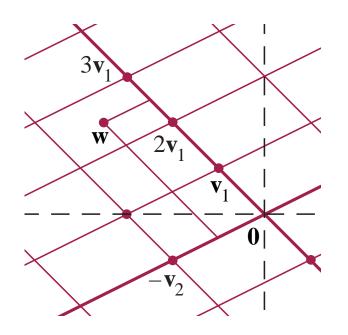


FIGURE 8 Linear combinations of \mathbf{v}_1 and \mathbf{v}_2 .



1.3.03

Lay, Linear Algebra and Its Applications, Second Edition-Update Copyright © 2000 by Addison Wesley Longman. All rights reserved.

EXAMPLE 5' Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} -1 \\ 2 \\ 7 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$.

Determine whether **b** is a linear combination of \mathbf{a}_1 and \mathbf{a}_2 . Do weights x_1 and x_2 exist such that

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 = \mathbf{b} \tag{1}$$

Solution

$$x_{1}\begin{bmatrix}1\\0\\-3\end{bmatrix}+x_{2}\begin{bmatrix}-1\\-2\\7\end{bmatrix}=\begin{bmatrix}-3\\4\\1\end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathbf{a}_{1} \qquad \mathbf{a}_{2} \qquad \mathbf{b}$$

Rewrite this vector equation:

$$\begin{bmatrix} x_1 \\ 0 \\ -3x_1 \end{bmatrix} + \begin{bmatrix} -x_2 \\ -2x_2 \\ 7x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$$

and

$$\begin{bmatrix} x_1 - x_2 \\ 0 - 2x_2 \\ -3x_1 + 7x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$$

(2)

1.3.04

Lay, *Linear Algebra and Its Applications*, Second Edition—Update Copyright © 2000 by Addison Wesley Longman. All rights reserved.

$$x_{1}\mathbf{a}_{1} + x_{2}\mathbf{a}_{2} = \mathbf{b}$$

$$x_{1}\begin{bmatrix}1\\0\\-3\end{bmatrix} + x_{2}\begin{bmatrix}-1\\-2\\7\end{bmatrix} = \begin{bmatrix}-3\\4\\1\end{bmatrix}$$

$$\begin{bmatrix}x_{1} - x_{2}\\7\end{bmatrix} = \begin{bmatrix}-3\\4\\1\end{bmatrix}$$

$$\begin{bmatrix}x_{1} - x_{2}\\-3x_{1} + 7x_{2}\end{bmatrix} = \begin{bmatrix}-3\\4\\1\end{bmatrix}$$

$$x_{1} - x_{2} = -3$$

$$0 - 2x_{2} = 4$$

$$-3x_{1} + 7x_{2} = 1$$

Solve this system by row reducing the augmented matrix:

$$\begin{bmatrix} 1 & -1 & -3 \\ 0 & -2 & 4 \\ -3 & 7 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -3 \\ 0 & -2 & 4 \\ 0 & 4 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -3 \\ 0 & -2 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

The system is consistent, so **b** is a linear combination of \mathbf{a}_1 and \mathbf{a}_2 . To find the weights, complete the row reduction, and obtain $x_1 = -5, x_2 = -2$. Thus

 $-5a_1 - 2a_2 = b$

1.3.05

Lay, Linear Algebra and Its Applications, Second Edition-Update Copyright © 2000 by Addison Wesley Longman. All rights reserved.

Summary:

To study the equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 = \mathbf{b}$, consider:

$$\begin{bmatrix} 1 & -1 & -3 \\ 0 & -2 & 4 \\ -3 & 7 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{b} \end{bmatrix}$$
$$\uparrow \uparrow \uparrow \uparrow$$
$$\mathbf{a}_1 \quad \mathbf{a}_2 \quad \mathbf{b}$$

A vector equation

 $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$

has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$$
(*)

In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and only if the linear system corresponding to (*) has a solution.

Definition. If $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are vectors in \mathbb{R}^n , then the set of all possible linear combinations of $\mathbf{v}_1, \ldots, \mathbf{v}_p$ is denoted by

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$$

Vectors of the form

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_p\mathbf{v}_p$$

Note: Every scalar multiple of \mathbf{v}_1 (for example) is in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ }, because

$$c\mathbf{v}_1 = c\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_p$$

The zero vector is always in $\text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$. The only vectors in $\text{Span}\{\mathbf{v}_1\}$ are multiples of \mathbf{v}_1 .

A Geometric Description of Span{v}

If \mathbf{v} in \mathbb{R}^3 is nonzero, then Span{ \mathbf{v} } is the set of points on the line in \mathbb{R}^3 through \mathbf{v} and the origin.

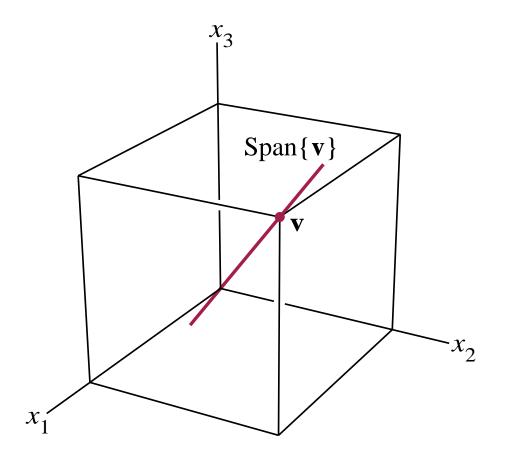


FIGURE 10 Span $\{v\}$ as a line through the origin.

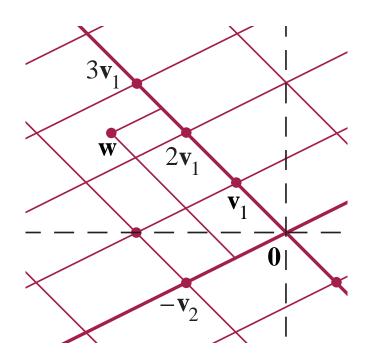


FIGURE 9

EXAMPLE 6' Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} -1 \\ -2 \\ 7 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -3 \\ 4 \\ 2 \end{bmatrix}$.

(Same \mathbf{a}_1 , \mathbf{a}_2 as in Example 5'.) Determine whether **b** is in the plane spanned by \mathbf{a}_1 and \mathbf{a}_2 .

Solution Does $x_1\mathbf{a}_1 + x_2\mathbf{x}_2 = \mathbf{b}$ have a solution? Row reduce $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{b} \end{bmatrix}$:

Γ	1	-1	-3		1	-1	-3		1	-1	-37
	0	-2	4	\sim	0	-2	4	\sim	0	-2	4
	-3	7	2		0	4	_7_		0	0	$\begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$

The vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 = \mathbf{b}$ has no solution. So **b** is *not* in Span{ $\mathbf{a}_1, \mathbf{a}_2$ }.