1.3 VECTOR EQUATIONS

\mathbb{R}^{n} is the collection of all lists (ordered n-tuples) of n real numbers. Example:

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Algebraic Properties of \mathbb{R}^{n}

For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^{n} and all scalars c and d :

- $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
- $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ associative property
$\cdot \mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
- $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$
- $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
- $(c+d) \mathbf{u}+c \mathbf{u}+d \mathbf{u}$
- $c(d \mathbf{u})=(c d) \mathbf{u}$
- $1 \mathbf{u}=\mathbf{u}$
commutative property zero vector
$-\mathbf{u}$ denotes $(-1) \mathbf{u}$ distributive property

Vector "Subtraction"

Write $\mathbf{u}-\mathbf{v}$ in place of $\mathbf{u}+(-1) \mathbf{v}$.

Linear Combinations

For vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ in \mathbb{R}^{n} and scalars c_{1}, \ldots, c_{p}, the vector

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

is called a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ using weights c_{1}, \ldots, c_{p}. Examples:

$$
3.5 \mathbf{v}_{1}+0 \mathbf{v}_{2} \quad\left(=3.5 \mathbf{v}_{1}\right), \quad 0 \mathbf{v}_{1}+0 \mathbf{v}_{2} \quad(=\mathbf{0})
$$

EXAMPLE 4 Let $\mathbf{v}_{1}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Estimate the linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2} that generate \mathbf{u} and \mathbf{w}.

FIGURE 8 Linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2}.

${ }^{\text {EXAMPLE 5 }}{ }^{\prime} \quad$ Let $\mathbf{a}_{1}=\left[\begin{array}{r}1 \\ 0 \\ -3\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}-1 \\ 2 \\ 7\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-3 \\ 4 \\ 1\end{array}\right]$. Determine whether \mathbf{b} is a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}. Do weights x_{1} and x_{2} exist such that

$$
\begin{equation*}
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}=\mathbf{b} \tag{1}
\end{equation*}
$$

Solution

Rewrite this vector equation:

$$
\left[\begin{array}{c}
x_{1} \\
0 \\
-3 x_{1}
\end{array}\right]+\left[\begin{array}{r}
-x_{2} \\
-2 x_{2} \\
7 x_{2}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
1
\end{array}\right]
$$

and

$$
\left[\begin{array}{r}
x_{1}-x_{2} \tag{2}\\
0-2 x_{2} \\
-3 x_{1}+7 x_{2}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2} & =\mathbf{b} \\
x_{1}\left[\begin{array}{r}
1 \\
0 \\
-3
\end{array}\right]+x_{2}\left[\begin{array}{r}
-1 \\
-2 \\
7
\end{array}\right] & =\left[\begin{array}{r}
-3 \\
4 \\
1
\end{array}\right] \\
{\left[\begin{array}{r}
x_{1}-x_{2} \\
0-2 x_{2} \\
-3 x_{1}+7 x_{2}
\end{array}\right] } & =\left[\begin{array}{r}
-3 \\
4 \\
1
\end{array}\right] \\
x_{1}-x_{2} & =-3 \\
0-2 x_{2} & =4 \\
-3 x_{1}+7 x_{2} & =1
\end{aligned}
$$

Solve this system by row reducing the augmented matrix:

$$
\left[\begin{array}{rrr}
1 & -1 & -3 \\
0 & -2 & 4 \\
-3 & 7 & 1
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -1 & -3 \\
0 & -2 & 4 \\
0 & 4 & -8
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -1 & -3 \\
0 & -2 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

The system is consistent, so \mathbf{b} is a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}. To find the weights, complete the row reduction, and obtain $x_{1}=-5, x_{2}=-2$. Thus

$$
-5 \mathbf{a}_{1}-2 \mathbf{a}_{2}=\mathbf{b}
$$

Summary:

To study the equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}=\mathbf{b}$, consider:

A vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b} \tag{*}
\end{array}\right]
$$

In particular, \mathbf{b} can be generated by a linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ if and only if the linear system corresponding to (*) has a solution.

Definition. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are vectors in \mathbb{R}^{n}, then the set of all possible linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted by

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}
$$

Vectors of the form

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

Note: Every scalar multiple of \mathbf{v}_{1} (for example) is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$, because

$$
c \mathbf{v}_{1}=c \mathbf{v}_{1}+0 \mathbf{v}_{2}+\cdots+0 \mathbf{v}_{p}
$$

The zero vector is always in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. The only vectors in $\operatorname{Span}\left\{\mathbf{v}_{1}\right\}$ are multiples of \mathbf{v}_{1}.

A Geometric Description of Span\{v\}

If \mathbf{v} in \mathbb{R}^{3} is nonzero, then $\operatorname{Span}\{\mathbf{v}\}$ is the set of points on the line in \mathbb{R}^{3} through \mathbf{v} and the origin.

FIGURE $10 \quad \operatorname{Span}\{\mathbf{v}\}$ as a line through the origin.

FIGURE 9
${ }^{\text {EXAMPLE 6 }}{ }^{\prime} \quad$ Let $\mathbf{a}_{1}=\left[\begin{array}{r}1 \\ 0 \\ -3\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}-1 \\ -2 \\ 7\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-3 \\ 4 \\ 2\end{array}\right]$.
(Same $\mathbf{a}_{1}, \mathbf{a}_{2}$ as in Example 5^{\prime}.) Determine whether \mathbf{b} is in the plane spanned by \mathbf{a}_{1} and \mathbf{a}_{2}.

Solution Does $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{x}_{2}=\mathbf{b}$ have a solution?
Row reduce $\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}\end{array}\right]$:

$$
\left[\begin{array}{rrr}
1 & -1 & -3 \\
0 & -2 & 4 \\
-3 & 7 & 2
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -1 & -3 \\
0 & -2 & 4 \\
0 & 4 & -7
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -1 & -3 \\
0 & -2 & 4 \\
0 & 0 & 1
\end{array}\right]
$$

The vector equation $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}=\mathbf{b}$ has no solution. So \mathbf{b} is not in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.

