1.1 SYSTEMS OF LINEAR EQUATIONS

A linear equation:

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

Examples:

$$
4 x_{1}-5 x_{2}+2=x_{1} \quad \text { and } \quad x_{2}=2\left(\sqrt{6}-x_{1}\right)+x_{3}
$$

Not linear:

$$
4 x_{1}-5 x_{2}=x_{1} x_{2} \quad \text { and } \quad x_{2}=2 \sqrt{x_{1}}-6
$$

A system of linear equations (or a linear system):
A collection of one or more linear equations involving the same set of variables, say, x_{1}, \ldots, x_{n}.

A solution of the system:
A list $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of numbers that makes each equation in the system a true statement when the values s_{1}, \ldots, s_{n} are substituted for x_{1}, \ldots, x_{n}, respectively.

EXAMPLE Two equations in two variables:

A solution is a pair $\left(x_{1}, x_{2}\right)$ that lies on both lines.
Two other possibilities:

Basic Fact: A system of linear equations has either
(i) exactly one solution; or
(ii) infinitely many solutions; or
(iii) no solution.
consistent consistent inconsistent

EXAMPLE Three equations in three variables. Each equation determines a plane in space.
i) The planes intersect in one point:

ii) The planes intersect in a line:

iii) There is no point common to all three planes:

1.1.03

The solution set:
The set of all possible solutions of the system.

Equivalent systems:

Two linear systems with the same solution set.

STRATEGY FOR SOLVING A SYSTEM:

Replace one system with an equivalent system that is easier to solve.

EXAMPLE

$$
\left.\begin{array}{rlrl}
x_{1}-2 x_{2}=-1 \\
-x_{1}+3 x_{2}=3
\end{array}\right) \quad \rightarrow \quad \begin{aligned}
x_{1}-2 x_{2} & =-1 \\
x_{2} & =2 \\
& \\
& \rightarrow \quad x_{1} \\
& =3 \\
x_{2} & =2
\end{aligned}
$$

EXAMPLE

1.1.05

MATRIX NOTATION

coefficient matrix:

$$
\begin{aligned}
x_{1}-2 x_{2}= & -1 \\
-x_{1}+3 x_{2}= & 3
\end{aligned}
$$

$$
\left[\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right]
$$

augmented matrix:

$$
\begin{array}{rlrl}
x_{1}-2 x_{2} & =-1 \\
-x_{1}+3 x_{2} & =3 \\
x_{1}-2 x_{2} & =-1 \\
x_{2} & =2 & & {\left[\begin{array}{rrr}
1 & -2 & -3 \\
-1 & 3 & 3
\end{array}\right]} \\
x_{1} & =3 & & {\left[\begin{array}{rrr}
1 & -2 & -1 \\
0 & 1 & 2
\end{array}\right]} \\
x_{2} & =2 & & {\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2
\end{array}\right]}
\end{array}
$$

Elementary row operations:

1. (Replacement) Add to one row a multiple of another row.
2. (Interchange) Interchange two rows
3. (Scaling) Multiply all entries in a row by a nonzero constant.

Fact about Row Equivalence: If the augmented matrices of two linear systems are now equivalent, then the two systems have the same solution set.

EXAMPLE 1

$$
\left.\begin{array}{rlrl}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9 \\
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-3 x_{2}+13 x_{3} & =-9 \\
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-4 x_{3} & =4 \\
-3 x_{2}+13 x_{3} & =-9 \\
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{2}-4 x_{3} & =4 \\
x_{3} & =3 \\
& =-3 \\
& =16 \\
x_{3} & =3 \\
x_{1}-2 x_{2} & 5 & 9 & -9
\end{array}\right] \begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & 9 & {\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right]} \\
x_{2} & & {\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right]} \\
& =16 \\
x_{1} & & {\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]} \\
x_{1} & {\left[\begin{array}{rrrr}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]} \\
x_{2} & {\left[\begin{array}{rrrr}
1 & 0 & 0 & 29 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]}
\end{array}
$$

Solution is $(29,16,3)$

Check:

Is $(29,16,3)$ a solution of the original system?

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}= & 0 \\
2 x_{2}-8 x_{3}= & 8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9
\end{aligned}
$$

Substitute and compute:

$$
\begin{aligned}
& (29)-2(16)+(3)=29-32+3=0 \\
& 2(16)-8(3)=32-24=8 \\
& -4(29)+5(16)+9(3)=-116+80+27=-9
\end{aligned}
$$

TWO FUNDAMENTAL QUESTIONS

(1) Is the system consistent; that is, does a solution exist?
(2) If a solution exists, is it the only one; that is, is the solution unique?

EXAMPLE 2 Is this system consistent?

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3}= & 0 \\
2 x_{2}-8 x_{3}= & 8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9
\end{aligned}
$$

Solution In Example 1 we row reduced this system to the "triangular" form:

$$
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=0 \\
x_{2}-4 x_{3}=4 \\
x_{3}=3
\end{array} \quad\left[\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Now we can see that a solution exists and it is unique. (Why?)

EXAMPLE 3^{\prime} Is this system consistent?

$$
\begin{array}{r}
3 x_{2}-6 x_{3}=8 \\
x_{1}-2 x_{2}+3 x_{3}=-1 \\
5 x_{1}-7 x_{2}+9 x_{3}=
\end{array} \quad 0 \quad\left[\begin{array}{rrrr}
0 & 3 & -6 & 8 \\
1 & -2 & 3 & -1 \\
5 & -7 & 9 & 0
\end{array}\right]
$$

Solution Row operations on the augmented matrix:

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
1 & -2 & 3 & -1 \\
0 & 3 & -6 & 8 \\
5 & -7 & 9 & 0
\end{array}\right] } & \sim\left[\begin{array}{rrrr}
1 & -2 & 3 & -1 \\
0 & 3 & -6 & 8 \\
0 & 3 & -6 & 5
\end{array}\right] \\
& \sim\left[\begin{array}{rrrr}
1 & -2 & 3 & -1 \\
0 & 3 & -6 & 8 \\
0 & 0 & 0 & -3
\end{array}\right]
\end{aligned}
$$

To interpret this "triangular form" go back to equation notation:

$$
\begin{aligned}
x_{1}-2 x_{2}+3 x_{3} & =-1 \\
3 x_{2}-6 x_{3} & =8 \\
0 & =-3 \quad \leftarrow \text { Never true }!
\end{aligned}
$$

EXAMPLE For what values of h will the following system be consistent?

$$
\begin{array}{r}
3 x_{1}-9 x_{2}=4 \\
-2 x_{1}+6 x_{2}=h
\end{array}
$$

Solution Reduce the system to triangular form.
Add $2 / 3$ times row 1 to row 2 :

$$
\begin{aligned}
& 3 x_{1}-9 x_{2}=4 \\
& 0 x_{1}+0 x_{2}=h+8 / 3 \longleftarrow \quad \text { only true if } h+8 / 3=0
\end{aligned}
$$

The system is consistent precisely when $h=-8 / 3$.

