1.2 ROW REDUCTION, ECHELON FORMS

Echelon form (or row echelon form):

1. All nonzero rows are above any row of zeros.
2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
3. All entries in a column below a leading entry are zero.

EXAMPLE 1 Echelon form:
(i)

(ii)

(iii) $\left[\begin{array}{lllllllllll}0 & ■ & * & * & * & * & * & * & * & * & * \\ 0 & 0 & 0 & ■ & * & * & * & * & * & * & * \\ 0 & 0 & 0 & 0 & ■ & * & * & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \bullet & * & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet & *\end{array}\right]$

Reduced echelon form Add the conditions:
4. The leading entry in each nonzero row is 1 .
5. Each leading 1 is the only nonzero entry in its column.

EXAMPLE 1 (continued)

Reduced echelon form:

$$
\left[\begin{array}{lllllllllll}
0 & 1 & * & 0 & 0 & 0 & * & * & * & 0 & * \\
0 & 0 & 0 & 1 & 0 & 0 & * & * & * & 0 & * \\
0 & 0 & 0 & 0 & 1 & 0 & * & * & * & 0 & * \\
0 & 0 & 0 & 0 & 0 & 1 & * & * & * & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & *
\end{array}\right]
$$

THEOREM 1. UNIQUENESS OF THE REDUCED ECHELON FORM

Each matrix is row-equivalent to one and only one reduced echelon matrix.

Some terms used throughout the text:

pivot position:

a position of a leading entry in an echelon form of the matrix.
pivot:
a nonzero number that either is used in a pivot position to create 0 's or is changed into a leading 1 , which in turn is used to create 0 's.
pivot column:
a column that contains a pivot position
See the Glossary at the back of the text.

EXAMPLE 2 Row reduce to echelon form, and locate the pivot columns.

$$
\left[\begin{array}{rrrrr}
0 & -3 & -6 & 4 & 9 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
1 & 4 & 5 & -9 & -7
\end{array}\right]
$$

Solution
Pivot

$$
\left[\begin{array}{rrrrr}
1 & 4 & 5 & -9 & -7 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
0 & -3 & -6 & 4 & 9
\end{array}\right]
$$

Pivot position

EXAMPLE 3 Row reduce to echelon form and then to reduced echelon form:

$$
\left[\begin{array}{rrrrrr}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{array}\right]
$$

Solution

$$
\left[\begin{array}{rrrrrr}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{array}\right]
$$

Interchange rows 1 and 3.

$$
\begin{aligned}
& \text { Pivot } \\
& {\left[\begin{array}{rrrrrr}
3 \rightleftarrows & -9 & 12 & -9 & 6 & 15 \\
3 & -7 & 8 & -5 & 8 & 9 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right]}
\end{aligned}
$$

Add -1 times row 1 to row 2 .

$$
\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right]
$$

Cover the top row and look at the remaining two rows for the left-most nonzero column.

Pivot
$\left[\begin{array}{rr|rrrr}3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5\end{array}\right]$

This is echelon form.

Final Step to Create the Reduced Echelon Form::
Beginning with the rightmost leading entry, and working upwards to the left, create zeros above each leading entry.

$$
\begin{gathered}
{\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 0 & -9 \\
0 & 2 & -4 & 4 & 0 & -14 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 0 & -9 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]} \\
\approx\left[\begin{array}{rrrrrr}
3 & 0 & -6 & 9 & 0 & -72 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & -2 & 3 & 0 & -24 \\
0 & 1 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]
\end{gathered}
$$

SOLUTIONS OF LINEAR SYSTEMS

basic variable:

any variable that corresponds to a pivot column in the augmented matrix of a system.

free variables:

all nonbasic variables.

EXAMPLE 4^{\prime}

Final Step in Solving a Consistent Linear System

After the augmented matrix is in reduced echelon form and the system is written down as a set of equations:

Solve each equation for the basic variables in terms of the free variables (if any) in the equation.

EXAMPLE

$$
\begin{aligned}
x_{1}+6 x_{2}+3 x_{4} & =0 \\
x_{3}-8 x_{4} & =5 \\
x_{5} & =7
\end{aligned} \quad\left\{\begin{array}{l}
x_{1}=-6 x_{2}-3 x_{4} \\
x_{2} \text { is free } \\
x_{3}=5+8 x_{4} \\
x_{4} \text { is free } \\
x_{5}=7
\end{array}\right.
$$

The general solution of the system provides a parametric description of the solution set. (The free variables act as parameters.)

BACK-SUBSTITUTION

The following system is in echelon form but is not in reduced echelon form.

$$
\begin{aligned}
x_{1}-7 x_{2}+2 x_{3}-5 x_{4}+8 x_{5} & =10 \\
x_{2}-3 x_{3}+3 x_{4}+x_{5} & =-5 \\
x_{4}-x_{5} & =4
\end{aligned}
$$

The backward phase of row reduction, to reduced echelon form, is equivalent to back-substitution. Use only the reduced echelon form to solve a system.

A Geometric Description of Span\{u, v\}

Take \mathbf{u} and \mathbf{v} in \mathbb{R}^{3}, with \mathbf{v} not a multiple of \mathbf{u}.
$\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}=$ plane containing \mathbf{u}, \mathbf{v}, and the origin $\mathbf{0}$.
$=$ the plane in \mathbb{R}^{3} spanned by \mathbf{u} and \mathbf{v}.

FIGURE $11 \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ as a plane through the origin.
Visualize $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ as a plane through the origin, whenever \mathbf{u} and \mathbf{v} are in \mathbb{R}^{n} and \mathbf{v} is not a multiple of \mathbf{u}.

