1.2 ROW REDUCTION, ECHELON FORMS

Echelon form (*or* **row echelon form**):

- 1. All nonzero rows are above any row of zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zero.

Reduced echelon form Add the conditions:

- 4. The leading entry in each nonzero row is 1.
- 5. Each leading 1 is the only nonzero entry in its column.

EXAMPLE 1 (continued)

Reduced echelon form:

$\begin{bmatrix} 0 \end{bmatrix}$	1	*	0	0	0	*	*	*	0	*
0	0	0	1	0	0	*	*	*	0	*
0	0	0	0	1	0	*	*	*	0	*
0	0	0	0	0	1	*	*	*	0	*
0	0	0	0	0	0	0	0	0	1	*

THEOREM 1. UNIQUENESS OF THE REDUCED ECHELON FORM

Each matrix is row-equivalent to one and only one reduced echelon matrix.

Some terms used throughout the text:

pivot position:

a position of a leading entry in an echelon form of the matrix.

pivot:

a nonzero number that either is used in a pivot position to create 0's or is changed into a leading 1, which in turn is used to create 0's.

pivot column:

a column that contains a pivot position

See the Glossary at the back of the text.

EXAMPLE 2 Row reduce to echelon form, and locate the pivot columns.

$$\begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

Solution

Lay, Linear Algebra and Its Applications, Second Edition—Update Copyright © 2000 by Addison Wesley Longman. All rights reserved.

EXAMPLE 3 Row reduce to echelon form and then to reduced echelon form:

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}$$

Solution

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}$$
Pivot column

Interchange rows 1 and 3.

Pivot

$$\begin{bmatrix} 3 \leftarrow -9 & 12 & -9 & 6 & 15 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$

Add -1 times row 1 to row 2.

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$

1.2.05

Lay, *Linear Algebra and Its Applications*, Second Edition—Update Copyright © 2000 by Addison Wesley Longman. All rights reserved.

Cover the top row and look at the remaining two rows for the left-most nonzero column.

Pivot

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$
New pivot column

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
Pivot

This is echelon form.

Final Step to Create the Reduced Echelon Form::

Beginning with the rightmost leading entry, and working upwards to the left, create zeros above each leading entry.

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 0 & -9 \\ 0 & 2 & -4 & 4 & 0 & -14 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 3 & -9 & 12 & -9 & 0 & -9 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
$$\approx \begin{bmatrix} 3 & 0 & -6 & 9 & 0 & -72 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

1.2.06

SOLUTIONS OF LINEAR SYSTEMS

basic variable:

any variable that corresponds to a pivot column in the augmented matrix of a system.

free variables:

all nonbasic variables.

EXAMPLE 4'

[1]	6	0	3	0	0	$x_1 + 6x_2$	$+ 3x_4$	= 0		
0	0	1 -	-8	0	5		$x_3 - 8x_4$	= 5		
0	0	0	0	1	7			$x_5 = 7$		
^ ↑		\uparrow		\uparrow	_	\uparrow	\uparrow	\uparrow		
pivot columns: 1, 3, 5						basic vari	basic variables: x_1 , x_3 , x_5			
free variables: x_2 and x_4										

Final Step in Solving a Consistent Linear System

After the augmented matrix is in **reduced** echelon form and the system is written down as a set of equations:

Solve each equation for the basic variables in terms of the free variables (if any) in the equation.

1.2.07

$$x_{1} + 6x_{2} + 3x_{4} = 0$$

$$x_{3} - 8x_{4} = 5$$

$$x_{5} = 7$$

$$\begin{cases} x_{1} = -6x_{2} - 3x_{4} \\ x_{2} \text{ is free} \\ x_{3} = 5 + 8x_{4} \\ x_{4} \text{ is free} \\ x_{5} = 7 \end{cases}$$

The **general solution** of the system provides a parametric description of the solution set. (The free variables act as parameters.)

BACK-SUBSTITUTION

The following system is in echelon form but is *not* in reduced echelon form.

$$x_1 - 7x_2 + 2x_3 - 5x_4 + 8x_5 = 10$$

$$x_2 - 3x_3 + 3x_4 + x_5 = -5$$

$$x_4 - x_5 = 4$$

The backward phase of row reduction, to reduced echelon form, is equivalent to back-substitution. Use only the **reduced** echelon form to solve a system.

A Geometric Description of Span{u, v}

Take **u** and **v** in \mathbb{R}^3 , with **v** not a multiple of **u**.

Span{ \mathbf{u}, \mathbf{v} } = plane containing \mathbf{u}, \mathbf{v} , and the origin $\mathbf{0}$. = the plane in \mathbb{R}^3 spanned by \mathbf{u} and \mathbf{v} .

FIGURE 11 Span $\{u, v\}$ as a plane through the origin.

Visualize Span{ \mathbf{u}, \mathbf{v} } as a plane through the origin, whenever \mathbf{u} and \mathbf{v} are in \mathbb{R}^n and \mathbf{v} is not a multiple of \mathbf{u} .