Optimization and Model Reduction of Time Dependent PDE-Constrained Optimization Problems

Harbir Antil

Department of Mathematical Sciences
George Mason University, Fairfax, Virginia
hantil@gmu.edu

Centro Stefano Franscini, Ascona, Swizterland September 1-6, 2013

Collaborators: Profs. Heinkenschloss, Hoppe, Sorensen, Nochetto and Dr. Sodré

Outline

Model Reduction and Optimal Control of Linear-Quadratic Problems

Model Reduction and Optimization of Problems with Localized Nonlinearities

Regularity of Stokes Equation with Slip Boundary Conditions on Sobolev Domains

Outline

Model Reduction and Optimal Control of Linear-Quadratic Problems

Model Reduction and Optimization of Problems with Localized Nonlinearities

Regularity of Stokes Equation with Slip Boundary Conditions on Sobolev Domains

The Problem

- We consider optimal control problems governed by advection diffusion equations

$$
\left.\frac{\partial}{\partial t} y(x, t)-\nabla(k(x) \nabla y(x, t))+V(x) \cdot \nabla y(x, t)\right)=f(x, t)
$$

in $\Omega \times(0, T)$. The optimization variables are related to the right hand side f or to boundary data.

- After (finite element) discretization in space the optimal control problems are of the form

$$
\min J(\mathbf{u}) \equiv \frac{1}{2} \int_{0}^{T}\|\mathbf{C y}(t)+\mathbf{D} \mathbf{u}(t)-\mathbf{d}(t)\|^{2} d t
$$

where $\mathbf{y}(t)=\mathbf{y}(\mathbf{u} ; t)$ is the solution of

$$
\begin{aligned}
\mathbf{M y}^{\prime}(t) & =\mathbf{A} \mathbf{y}(t)+\mathbf{B u}(t), \quad t \in(0, T) \\
\mathbf{y}(0) & =\mathbf{y}_{0}
\end{aligned}
$$

Here $\mathbf{y}(t) \in \mathbb{R}^{N}, \mathbf{M}, \mathbf{A} \in \mathbb{R}^{N \times N}, \mathbf{B} \in \mathbb{R}^{N \times m}$, with N large.

The Reduced Order Problem

- Projection matrices $\mathbf{W}, \mathbf{V} \in \mathbb{R}^{N \times n}$ with $n \ll N$ small.
- Replace states $\mathbf{y}(t)$ by $\mathbf{V} \widehat{\mathbf{y}}(t)$ and project state equation by \mathbf{W}. This gives reduced order state equation

$$
\underbrace{\mathbf{W}^{T} \mathbf{M} \mathbf{V}}_{=\widehat{\mathbf{M}}} \widehat{\mathbf{y}}^{\prime}(t)=\underbrace{\mathbf{W}^{T} \mathbf{A V}}_{=\widehat{\mathbf{A}}} \widehat{\mathbf{y}}(t)+\underbrace{\mathbf{W}^{T} \mathbf{B}}_{=\widehat{\mathbf{B}}} \mathbf{u}(t)
$$

and reduced order objective function

$$
\int_{0}^{T}\|\underbrace{\mathbf{C V}}_{=\widehat{\mathbf{C}}} \widehat{\mathbf{y}}(t)+\mathbf{D u}(t)-\mathbf{d}(t)\|^{2} d t
$$

- The reduced optimal control problem is

$$
\min \widehat{J}(\mathbf{u}) \equiv \frac{1}{2} \int_{0}^{T}\|\widehat{\mathbf{C}} \widehat{\mathbf{y}}(t)+\mathbf{D u}(t)-\mathbf{d}(t)\|^{2} d t
$$

where $\widehat{\mathbf{y}}(t)=\widehat{\mathbf{y}}(\mathbf{u} ; t)$ solves

$$
\begin{aligned}
\widehat{\mathbf{M}} \widehat{\mathbf{y}}^{\prime}(t) & =\widehat{\mathbf{A}} \widehat{\mathbf{y}}(t)+\widehat{\mathbf{B}} \mathbf{u}(t), \quad t \in(0, T) \\
\widehat{\mathbf{y}}(0) & =\widehat{\mathbf{y}}_{0}
\end{aligned}
$$

Here $\widehat{\mathbf{y}}(t) \in \mathbb{R}^{n}, \widehat{\mathbf{M}}, \widehat{\mathbf{A}} \in \mathbb{R}^{n \times n}, \widehat{\mathbf{B}} \in \mathbb{R}^{n \times m}$, with $n \ll N$ small.

Error Analysis (Standard)

- U Hilbert space.
- Let $\mathbf{u}_{*}=\operatorname{argmin}_{\mathbf{u} \in \mathbf{U}} J(\mathbf{u})$ be the minimizer of the original problem and let $\widehat{\mathbf{u}}_{*}=\operatorname{argmin}_{\mathbf{u} \in \mathbf{U}} \widehat{J}(\mathbf{u})$ a minimizer of the reduced problem.
- Assume that J is a strictly convex quadratic function, i.e., that there exists $\kappa>0$ such that

$$
\langle\mathbf{u}-\mathbf{w}, \nabla J(\mathbf{u})-\nabla J(\mathbf{w})\rangle_{\mathbf{U}} \geq \kappa\|\mathbf{u}-\mathbf{w}\|_{\mathbf{U}}^{2} \text { for all } \mathbf{u}, \mathbf{w} \in \mathbf{U} .
$$

- Set $\mathbf{u}=\mathbf{u}_{*}$ and $\mathbf{w}=\widehat{\mathbf{u}}_{*}$ and use

$$
\nabla J\left(\mathbf{u}_{*}\right)=\nabla \widehat{J}\left(\widehat{\mathbf{u}}_{*}\right)=0
$$

to get

$$
\begin{aligned}
& \left\|\mathbf{u}_{*}-\widehat{\mathbf{u}}_{*}\right\|_{\mathbf{U}}\left\|\nabla \widehat{J}\left(\widehat{\mathbf{u}}_{*}\right)-\nabla J\left(\widehat{\mathbf{u}}_{*}\right)\right\|_{\mathbf{U}} \\
& =\left\|\mathbf{u}_{*}-\widehat{\mathbf{u}}_{*}\right\|_{\mathbf{U}}\left\|\nabla J\left(\mathbf{u}_{*}\right)-\nabla J\left(\widehat{\mathbf{u}}_{*}\right)\right\|_{\mathbf{U}} \\
& \geq\left\langle\mathbf{u}_{*}-\widehat{\mathbf{u}}_{*}, \nabla J\left(\mathbf{u}_{*}\right)-\nabla J\left(\widehat{\mathbf{u}}_{*}\right)\right\rangle_{\mathbf{U}} \geq \kappa\left\|\mathbf{u}_{*}-\widehat{\mathbf{u}}_{*}\right\|_{\mathbf{U}}^{2} .
\end{aligned}
$$

- Hence

$$
\left\|\mathbf{u}_{*}-\widehat{\mathbf{u}}_{*}\right\|_{\mathbf{U}} \leq \kappa^{-1}\left\|\nabla \widehat{J}\left(\widehat{\mathbf{u}}_{*}\right)-\nabla J\left(\widehat{\mathbf{u}}_{*}\right)\right\|_{\mathbf{U}}
$$

- Need to estimate error in the gradients to get estimate for error in the solution.

Gradient Computation

- For the original problem

$$
\begin{array}{rlrl}
\mathbf{M} \mathbf{y}^{\prime}(t) & =\mathbf{A} \mathbf{y}(t)+\mathbf{B u}(t), & & t \in(0, T), \\
\mathbf{z}(t) & =\mathbf{C y}(t)+\mathbf{D u}(t)-\mathbf{d}(t), & t \in(0, T) & \\
-\mathbf{y}_{0}, \\
-\mathbf{M}^{T} \boldsymbol{\lambda}^{\prime}(t) & =\mathbf{A}^{T} \boldsymbol{\lambda}(t)+\mathbf{C}^{T} \mathbf{z}(t), & & t \in(0, T), \\
\nabla J(\mathbf{u})=\mathbf{q}(t) & =\mathbf{B}^{T} \boldsymbol{\lambda}(t)+\mathbf{D}^{T} \mathbf{z}(t), & & t \in(0, T)=0,
\end{array}
$$

- For the reduced problem

$$
\begin{aligned}
\widehat{\mathbf{M}} \widehat{\mathbf{y}}^{\prime}(t) & =\widehat{\mathbf{A}} \widehat{\mathbf{y}}(t)+\widehat{\mathbf{B}} \mathbf{u}(t), & & t \in(0, T) \\
\widehat{\mathbf{z}}(t) & =\widehat{\mathbf{C}} \widehat{\mathbf{y}}(t)+\mathbf{D u}(t)-\mathbf{d}(t), & & t \in(0, T) \\
-\widehat{\mathbf{y}}^{T} \widehat{\boldsymbol{\lambda}}^{\prime}(t) & =\widehat{\mathbf{A}}^{T} \widehat{\boldsymbol{\lambda}}(t)+\widehat{\mathbf{C}}^{T} \widehat{\mathbf{z}}(t), & & t \in(0, T) \quad \widehat{\boldsymbol{\lambda}}(T)=0, \\
\nabla \widehat{J}(\mathbf{u})=\widehat{\mathbf{q}}(t) & =\widehat{\mathbf{B}}^{T} \widehat{\boldsymbol{\lambda}}(t)+\mathbf{D}^{T} \widehat{\mathbf{z}}(t), & & t \in(0, T)
\end{aligned}
$$

$7 / 52$

Requirement on Reduced Order Model

- Need to approximte state system

$$
\begin{array}{rlr}
\mathbf{M y}^{\prime}(t) & =\mathbf{A y}(t)+\mathbf{B u}(t), & t \in(0, T) \\
\mathbf{z}(t) & =\mathbf{C y}(t)+\mathbf{D u}(t), \quad t \in(0, T)
\end{array}
$$

and corresponding adjoint system

$$
\begin{aligned}
-\mathbf{M} \boldsymbol{\lambda}^{\prime}(t) & =\mathbf{A}^{T} \boldsymbol{\lambda}(t)+\mathbf{C w}(t), \quad t \in(0, T) \\
\mathbf{q}(t) & =\mathbf{B}^{T} \boldsymbol{\lambda}(t)+\mathbf{D}^{T} \mathbf{w}(t), \quad t \in(0, T)
\end{aligned}
$$

- Need to approximate input-to-output maps

$$
\mathbf{u} \mapsto \mathbf{z} \quad \text { and } \quad \mathbf{w} \mapsto \mathbf{q} .
$$

- We assume $\mathbf{y}_{0}=\mathbf{0}$ to simplify presentation. Inhomogeneous initial data can be handled with modification (Heinkenschloss, Reis, Antoulas 2011).
- Want reduced order state and adjoint systems

$$
\begin{aligned}
\widehat{\mathbf{M}} \widehat{\mathbf{y}}^{\prime}(t) & =\widehat{\mathbf{A}} \widehat{\mathbf{y}}(t)+\widehat{\mathbf{B}} \mathbf{u}(t), \quad t \in(0, T) \\
\widehat{\mathbf{z}}(t) & =\widehat{\mathbf{C}} \widehat{\mathbf{y}}(t)+\mathbf{D u}(t), \quad t \in(0, T), \\
\widehat{\mathbf{M}}^{T} \widehat{\boldsymbol{\lambda}}^{\prime}(t) & =\widehat{\mathbf{A}}^{T} \widehat{\boldsymbol{\lambda}}(t)+\widehat{\mathbf{C}}^{T} \mathbf{w}(t), \quad t \in(0, T) \\
\widehat{\mathbf{q}}(t) & =\widehat{\mathbf{B}}^{T} \widehat{\boldsymbol{\lambda}}(t)+\mathbf{D}^{T} \mathbf{w}(t), \quad t \in(0, T)
\end{aligned}
$$

with $\widehat{\mathbf{M}}=\mathbf{W}^{T} \mathbf{M V}, \widehat{\mathbf{A}}=\mathbf{W}^{T} \mathbf{A V}, \widehat{\mathbf{B}}=\mathbf{W}^{T} \mathbf{B}$, and $\widehat{\mathbf{C}}=\mathbf{C V}$,

- such that we have error bounds

$$
\begin{equation*}
\|\mathbf{z}-\widehat{\mathbf{z}}\|_{L^{2}} \leq \text { tol }\|\mathbf{u}\|_{L^{2}} \quad \text { and } \quad\|\mathbf{q}-\widehat{\mathbf{q}}\|_{L^{2}} \leq \text { toll }\|\mathbf{w}\|_{L^{2}} \tag{*}
\end{equation*}
$$

for any given inputs \mathbf{u} and \mathbf{w}, where fol is a user specified tolerance.

- Want reduced order state and adjoint systems

$$
\begin{aligned}
\widehat{\mathbf{M}} \widehat{\mathbf{y}}^{\prime}(t) & =\widehat{\mathbf{A}} \widehat{\mathbf{y}}(t)+\widehat{\mathbf{B}} \mathbf{u}(t), \quad t \in(0, T) \\
\widehat{\mathbf{z}}(t) & =\widehat{\mathbf{C}} \widehat{\mathbf{y}}(t)+\mathbf{D u}(t), \quad t \in(0, T), \\
\widehat{\mathbf{M}}^{T} \widehat{\boldsymbol{\lambda}}^{\prime}(t) & =\widehat{\mathbf{A}}^{T} \widehat{\boldsymbol{\lambda}}(t)+\widehat{\mathbf{C}}^{T} \mathbf{w}(t), \quad t \in(0, T) \\
\widehat{\mathbf{q}}(t) & =\widehat{\mathbf{B}}^{T} \widehat{\boldsymbol{\lambda}}(t)+\mathbf{D}^{T} \mathbf{w}(t), \quad t \in(0, T)
\end{aligned}
$$

with $\widehat{\mathbf{M}}=\mathbf{W}^{T} \mathbf{M V}, \widehat{\mathbf{A}}=\mathbf{W}^{T} \mathbf{A V}, \widehat{\mathbf{B}}=\mathbf{W}^{T} \mathbf{B}$, and $\widehat{\mathbf{C}}=\mathbf{C V}$,

- such that we have error bounds

$$
\begin{equation*}
\|\mathbf{z}-\widehat{\mathbf{z}}\|_{L^{2}} \leq \text { tol }\|\mathbf{u}\|_{L^{2}} \quad \text { and } \quad\|\mathbf{q}-\widehat{\mathbf{q}}\|_{L^{2}} \leq \text { tol }\|\mathbf{w}\|_{L^{2}} \tag{*}
\end{equation*}
$$

for any given inputs \mathbf{u} and \mathbf{w}, where tol is a user specified tolerance.

- If the system is stable $(\operatorname{Re}(\lambda(\mathcal{A}))<0)$, controllable and observable, we can use Balanced Truncation Model Reduction (BTMR).
BTMR error bound: For any given inputs \mathbf{u} and \mathbf{w}

$$
\begin{aligned}
\|\mathbf{z}-\widehat{\mathbf{z}}\|_{L^{2}} & \leq 2\left(\sigma_{n+1}+\ldots+\sigma_{N}\right)\|\mathbf{u}\|_{L^{2}} \\
\|\mathbf{q}-\widehat{\mathbf{q}}\|_{L^{2}} & \leq 2\left(\sigma_{n+1}+\ldots+\sigma_{N}\right)\|\mathbf{w}\|_{L^{2}}
\end{aligned}
$$

where $\sigma_{1} \geq \ldots \geq \sigma_{n} \geq \sigma_{n+1} \geq \ldots \sigma_{N} \geq 0$ are the Hankel singular values.
$9 / 52$

- Want reduced order state and adjoint systems

$$
\begin{aligned}
\widehat{\mathbf{M}} \widehat{\mathbf{y}}^{\prime}(t) & =\widehat{\mathbf{A}} \widehat{\mathbf{y}}(t)+\widehat{\mathbf{B}} \mathbf{u}(t), \quad t \in(0, T) \\
\widehat{\mathbf{z}}(t) & =\widehat{\mathbf{C}} \widehat{\mathbf{y}}(t)+\mathbf{D u}(t), \quad t \in(0, T), \\
\widehat{\mathbf{M}}^{T} \widehat{\boldsymbol{\lambda}}^{\prime}(t) & =\widehat{\mathbf{A}}^{T} \widehat{\boldsymbol{\lambda}}(t)+\widehat{\mathbf{C}}^{T} \mathbf{w}(t), \quad t \in(0, T) \\
\widehat{\mathbf{q}}(t) & =\widehat{\mathbf{B}}^{T} \widehat{\boldsymbol{\lambda}}(t)+\mathbf{D}^{T} \mathbf{w}(t), \quad t \in(0, T)
\end{aligned}
$$

with $\widehat{\mathbf{M}}=\mathbf{W}^{T} \mathbf{M V}, \widehat{\mathbf{A}}=\mathbf{W}^{T} \mathbf{A V}, \widehat{\mathbf{B}}=\mathbf{W}^{T} \mathbf{B}$, and $\widehat{\mathbf{C}}=\mathbf{C V}$,

- such that we have error bounds

$$
\begin{equation*}
\|\mathbf{z}-\widehat{\mathbf{z}}\|_{L^{2}} \leq \text { tol }\|\mathbf{u}\|_{L^{2}} \quad \text { and } \quad\|\mathbf{q}-\widehat{\mathbf{q}}\|_{L^{2}} \leq \text { tol }\|\mathbf{w}\|_{L^{2}} \tag{*}
\end{equation*}
$$

for any given inputs \mathbf{u} and \mathbf{w}, where tol is a user specified tolerance.

- If the system is stable $(\operatorname{Re}(\lambda(\mathcal{A}))<0)$, controllable and observable, we can use Balanced Truncation Model Reduction (BTMR).
BTMR error bound: For any given inputs \mathbf{u} and \mathbf{w}

$$
\begin{aligned}
\|\mathbf{z}-\widehat{\mathbf{z}}\|_{L^{2}} & \leq 2\left(\sigma_{n+1}+\ldots+\sigma_{N}\right)\|\mathbf{u}\|_{L^{2}} \\
\|\mathbf{q}-\widehat{\mathbf{q}}\|_{L^{2}} & \leq 2\left(\sigma_{n+1}+\ldots+\sigma_{N}\right)\|\mathbf{w}\|_{L^{2}}
\end{aligned}
$$

where $\sigma_{1} \geq \ldots \geq \sigma_{n} \geq \sigma_{n+1} \geq \ldots \sigma_{N} \geq 0$ are the Hankel singular values.

- We use BTMR in our numerics, but theoretical results only rely on error bound $\left({ }^{*}\right)$. Other model reduction approaches that have an error bound MASORE $\left(^{*}\right)$ can be used as well. We state results with tol $=2\left(\sigma_{n+1}+\ldots+\sigma_{N}\right)^{n}$.'

Back to Gradient Error Estimates

- For the original problem

$$
\begin{aligned}
\mathbf{M} \mathbf{y}^{\prime}(t) & =\mathbf{A y}(t)+\mathbf{B u}(t), & & t \in(0, T), \\
\mathbf{z}(t) & =\mathbf{C y}(t)+\mathbf{D u}(t)-\mathbf{y}(t), & & t \in(0, T)=\mathbf{y}_{0}, \\
-\mathbf{M} \boldsymbol{\lambda}^{\prime}(t) & =\mathbf{A}^{T} \boldsymbol{\lambda}(t)+\mathbf{C}^{T} \mathbf{z}(t), & & t \in(0, T), \\
\nabla J(\mathbf{u})=\mathbf{q}(t) & =\mathbf{B}^{T} \boldsymbol{\lambda}(t)+\mathbf{D}^{T} \mathbf{z}(t), & & t \in(0, T)=0,
\end{aligned}
$$

- For the reduced problem

$$
\begin{aligned}
\widehat{\mathbf{y}}^{\prime}(t) & =\widehat{\mathbf{A}} \widehat{\mathbf{y}}(t)+\widehat{\mathbf{B}} \mathbf{u}(t), & & t \in(0, T) \quad \widehat{\mathbf{y}}(0)=\widehat{\mathbf{y}}_{0}, \\
\widehat{\mathbf{z}}(t) & =\widehat{\mathbf{C}} \widehat{\mathbf{y}}(t)+\mathbf{D u}(t)-\mathbf{d}(t), & & t \in(0, T) \\
-\widehat{\boldsymbol{\lambda}}^{\prime}(t) & =\widehat{\mathbf{A}}^{T} \widehat{\boldsymbol{\lambda}}(t)+\widehat{\mathbf{C}}^{T} \widehat{\mathbf{z}}(t), & & t \in(0, T) \quad \widehat{\boldsymbol{\lambda}}(T)=0, \\
\nabla \widehat{J}(\mathbf{u})=\widehat{\mathbf{q}}(t) & =\widehat{\mathbf{B}}^{T} \widehat{\boldsymbol{\lambda}}(t)+\mathbf{D}^{T} \widehat{\mathbf{z}}(t), & & t \in(0, T)
\end{aligned}
$$

- We can almost apply BTMR error bounds, but need same inputs \mathbf{w} in full and reduced order adjoint system.
- Easy to fix: Introduce auxiliary adjoint $\widetilde{\boldsymbol{\lambda}}$ as solution of the original adjoint, but with input \widehat{z} instead of z.

Error Estimate

- Assume that there exists $\alpha>0$ such that

$$
\mathbf{v}^{T} \mathbf{A} \mathbf{v} \leq-\alpha \mathbf{v}^{T} \mathbf{M} \mathbf{v}, \quad \forall \mathbf{v} \in \mathbb{R}^{N}
$$

For any $\mathbf{u} \in L^{2}$ let $\widehat{\mathbf{y}}(\mathbf{u})$ be the corresponding reduced state and $\widehat{\mathbf{z}}(\mathbf{u})=\widehat{\mathbf{C}} \widehat{\mathbf{y}}(\mathbf{u})+\mathbf{D u}-\mathbf{d}$.

- There exists $c>0$ such that the error in the gradients obeys

$$
\|\nabla J(\mathbf{u})-\nabla \widehat{J}(\mathbf{u})\|_{L^{2}} \leq 2\left(c\|\mathbf{u}\|_{L^{2}}+\|\widehat{\mathbf{z}}(\mathbf{u})\|_{L^{2}}\right)\left(\sigma_{n+1}+\ldots+\sigma_{N}\right)
$$

for all $\mathbf{u} \in L^{2}$!

- Consequently, the error between the solutions satisfies

$$
\left\|\mathbf{u}_{*}-\widehat{\mathbf{u}}_{*}\right\|_{L^{2}} \leq \frac{2}{\kappa}\left(c\left\|\widehat{\mathbf{u}}_{*}\right\|_{L^{2}}+\left\|\widehat{\mathbf{z}}_{*}\right\|_{L^{2}}\right)\left(\sigma_{n+1}+\ldots+\sigma_{N}\right)
$$

Example Problem (modeled after Dede/Quarteroni 2005)

Minimize $\frac{1}{2} \int_{0}^{T} \int_{D}(y(x, t)-d(x, t))^{2} d x d t+\frac{10^{-4}}{2} \int_{0}^{T} \int_{U_{1} \cup U_{2}} u^{2}(x, t) d x d t$, subject to

$$
\begin{aligned}
& \frac{\partial}{\partial t} y(x, t)-\nabla(k \nabla y(x, t))+\mathbf{V}(x) \cdot \nabla y(x, t) \\
& =u(x, t) \chi_{U_{1}}(x)+u(x, t) \chi_{U_{2}}(x) \quad \text { in } \Omega \times(0,4),
\end{aligned}
$$

with boundary conditions $y(x, t)=0$ on $\Gamma_{D} \times(0,4), \frac{\partial}{\partial n} y(x, t)=0$ on $\Gamma_{N} \times(0,4)$ and initial conditions $y(x, 0)=0$ in Ω.

Ω with boundary conditions for the advection diffusion equation

the velocity field \mathbf{v}

grid	m	k	N	n
1	168	9	1545	9
2	283	16	2673	9
3	618	29	6036	9

The number m of observations, the number k of controls, the size N of the full order system, and the size n of the reduced order system for three discretizations.

The largest Hankel singular values and the threshold $10^{-4} \sigma_{1}$ (fine grid)

Integrals $\int_{U_{1}} u_{*}^{2}(x, t) d x$ (solid blue line) and $\int_{U_{1}} \widehat{u}_{*}^{2}(x, t) d x$ (dashed red line) of the optimal controls computed using the full and and the reduced order model.

Integrals $\int_{U_{2}} u_{*}^{2}(x, t) d x$ (solid blue line) and $\int_{U_{2}} \widehat{u}_{*}^{2}(x, t) d x$ (dashed red line) of the optimal controls computed using the full and and the reduced order model.

The full and reduced order model solutions are in excellent agreement:
$\left\|u_{*}-\widehat{u}_{*}\right\|_{L^{2}}^{2}=6.2 \cdot 10^{-3}$.

The convergence histories of the Conjugate Gradient algorithm applied to the full $(+)$ and the reduced (o) order optimal control problems.

Recall error bound for the gradients:

$$
\|\nabla J(\mathbf{u})-\nabla \widehat{J}(\mathbf{u})\|_{L^{2}} \leq 2\left(c\|\mathbf{u}\|_{L^{2}}+\|\widehat{\mathbf{z}}(\mathbf{u})\|_{L^{2}}\right)\left(\sigma_{n+1}+\ldots+\sigma_{N}\right)
$$

for all $\mathbf{u} \in L^{2}$!

Outline

Model Reduction and Optimal Control of Linear-Quadratic Problems

Model Reduction and Optimization of Problems with Localized Nonlinearities

Regularity of Stokes Equation with Slip Boundary Conditions on Sobolev Domains

Shape Optimization Problem

- Consider the minimization problem

$$
\min _{\theta \in \Theta_{a d}} J(\theta):=\int_{0}^{T} \int_{\Omega(\theta)} \ell(y(x, t ; \theta), t, \theta) d x d t
$$

where $y(x, t ; \theta)$ solves

$$
\begin{array}{rlrl}
\frac{\partial}{\partial t} y(x, t)-\nabla(k(x) \nabla y(x, t)) & & \\
+V(x) \cdot \nabla y(x, t)) & =f(x, t) & (x, t) \in \Omega(\theta) \times(0, T), \\
k(x) \nabla y(x, t) \cdot n & =g(x, t) & (x, t) \in \Gamma_{N}(\theta) \times(0, T) \\
y(x, t) & =u(x, t) & (x, t) \in \Gamma_{D}(\theta) \times(0, T), \\
y(x, 0) & =y_{0}(x) & x & \in \Omega_{D}(\theta)
\end{array}
$$

- Semidiscretization in space leads to

$$
\min _{\theta \in \Theta_{a d}} J(\theta):=\int_{0}^{T} \ell(\mathbf{y}(t ; \theta), t, \theta) d t
$$

where $\mathbf{y}(t ; \theta)$ solves

$$
\begin{aligned}
\mathbf{M}(\theta) \frac{d}{d t} \mathbf{y}(t)+\mathbf{A}(\theta) \mathbf{y}(t) & =\mathbf{B}(\theta) \mathbf{u}(t), \quad t \in[0, T] \\
\mathbf{M}(\theta) \mathbf{y}(0) & =\mathbf{M}(\theta) \mathbf{y}_{0}
\end{aligned}
$$

- We would like to replace the large scale problem

$$
\min _{\theta \in \Theta_{a d}} J(\theta):=\int_{0}^{T} \ell(\mathbf{y}(t ; \theta), t, \theta) d t
$$

where $\mathbf{y}(t ; \theta)$ solves

$$
\begin{aligned}
\mathbf{M}(\theta) \frac{d}{d t} \mathbf{y}(t)+\mathbf{A}(\theta) \mathbf{y}(t) & =\mathbf{B}(\theta) \mathbf{u}(t), \quad t \in[0, T] \\
\mathbf{M}(\theta) \mathbf{y}(0) & =\mathbf{M}(\theta) \mathbf{y}_{0}
\end{aligned}
$$

- by a reduced order problem

$$
\min _{\theta \in \Theta_{a d}} \widehat{J}(\theta):=\int_{0}^{T} \ell(\widehat{\mathbf{y}}(t ; \theta), t, \theta) d t
$$

where $\widehat{\mathbf{y}}(t ; \theta)$ solves

$$
\begin{aligned}
\widehat{\mathbf{M}(\theta)} \frac{d}{d t} \widehat{\mathbf{y}}(t)+\widehat{\mathbf{A}(\theta)} \mathbf{y}(t) & =\widehat{\mathbf{B}(\theta)} \mathbf{u}(t), \quad t \in[0, T] \\
\widehat{\mathbf{M}(\theta)} \widehat{\mathbf{y}}(0) & =\widehat{\mathbf{M}(\theta)} \widehat{\mathbf{y}}_{0}
\end{aligned}
$$

Problem is that we need a reduced order model that approximates the fUN M,
order model for all $\theta \in \Theta_{a d}$!

Consider Problems with Local Nonlinearity

- Consider classes of problems where the shape parameter θ only influences a (small) subdomain:

$$
\bar{\Omega}(\theta):=\bar{\Omega}_{1} \cup \bar{\Omega}_{2}(\theta), \quad \Omega_{1} \cap \Omega_{2}(\theta)=\emptyset, \quad \Gamma=\bar{\Omega}_{1} \cap \bar{\Omega}_{2}(\theta)
$$

Γ

Ω_{1}	$\Omega_{2}(\theta)$	Ω_{1}

- The FE stiffness matrix times vector can be decomposed into

$$
\mathbf{A y}=\left(\begin{array}{ccc}
\mathbf{A}_{1}^{I I} & \mathbf{A}_{1}^{I \Gamma} & 0 \\
\mathbf{A}_{1}^{\Gamma I} & \mathbf{A}^{\Gamma \Gamma}(\theta) & \mathbf{A}_{2}^{\Gamma I}(\theta) \\
0 & \mathbf{A}_{2}^{I \Gamma}(\theta) & \mathbf{A}_{2}^{I I}(\theta)
\end{array}\right)\left(\begin{array}{l}
\mathbf{y}_{1}^{I} \\
\mathbf{y}^{\Gamma} \\
\mathbf{y}_{2}^{I}
\end{array}\right)
$$

where $\mathbf{A}^{\Gamma \Gamma}(\theta)=\mathbf{A}_{1}^{\Gamma \Gamma}+\mathbf{A}_{2}^{\Gamma \Gamma}(\theta)$.
The matrices \mathbf{M}, \mathbf{B} admit similar representations.

- Consider objective functions of the type

$$
\int_{0}^{T} \ell(\mathbf{y}(t), t, \theta) d t=\frac{1}{2} \int_{0}^{T}\left\|\mathbf{C}_{1}^{I} \mathbf{y}_{1}^{I}-\mathbf{d}_{1}^{I}(t)\right\|_{2}^{2}+\widetilde{\ell}\left(\mathbf{y}^{\Gamma}(t), \mathbf{y}_{2}^{I}(t), t, \theta\right) d t \cdot \underset{\mathbf{U N}, \mathbf{V E R S I T v}}{\mathbf{M} \mathbf{A E O R G E}}
$$

Our Optimization problem

$$
\min _{\theta \in \Theta_{a d}} J(\theta):=\int_{0}^{T} \ell(\mathbf{y}(t ; \theta), t, \theta) d t
$$

where $\mathbf{y}(t ; \theta)$ solves

$$
\begin{aligned}
\mathbf{M}(\theta) \frac{d}{d t} \mathbf{y}(t)+\mathbf{A}(\theta) \mathbf{y}(t) & =\mathbf{B}(\theta) \mathbf{u}(t), \quad t \in[0, T] \\
\mathbf{M}(\theta) \mathbf{y}(0) & =\mathbf{M}(\theta) \mathbf{y}_{0}
\end{aligned}
$$

can now be written as

$$
\min _{\theta \in \Theta_{a d}} J(\theta):=\frac{1}{2} \int_{0}^{T}\left\|\mathbf{C}_{1}^{I} \mathbf{y}_{1}^{I}-\mathbf{d}_{1}^{I}(t)\right\|_{2}^{2}+\widetilde{\ell}\left(\mathbf{y}^{\Gamma}(t), \mathbf{y}_{2}^{I}(t), t, \theta\right) d t
$$

where $\mathbf{y}(t ; \theta)$ solves

$$
\begin{aligned}
& \mathbf{M}_{1}^{I I} \frac{d}{d t} \mathbf{y}_{1}^{I}(t)+\mathbf{M}_{1}^{I \Gamma} \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{A}_{1}^{I I} \mathbf{y}_{1}^{I}(t)+\mathbf{A}_{1}^{I \Gamma} \mathbf{y}^{\Gamma}(t)=\mathbf{B}_{1}^{I} \mathbf{u}_{1}^{I}(t) \\
& \mathbf{M}_{2}^{I I}(\theta) \frac{d}{d t} \mathbf{y}_{2}^{I}(t)+\mathbf{M}_{2}^{I \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{A}_{2}^{I I}(\theta) \mathbf{y}_{2}^{I}(t)+\mathbf{A}_{2}^{I \Gamma}(\theta) \mathbf{y}^{\Gamma}(t)=\mathbf{B}_{2}^{I}(\theta) \mathbf{u}_{2}^{I}(t) \\
& \mathbf{M}_{1}^{\Gamma I} \frac{d}{d t} \mathbf{y}_{1}^{I}(t)+\mathbf{M}^{\Gamma \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{M}_{2}^{\Gamma I}(\theta) \frac{d}{d t} \mathbf{y}_{2}^{I}(t) \\
& \quad+\mathbf{A}_{1}^{\Gamma I} \mathbf{y}_{1}^{I}(t)+\mathbf{A}^{\Gamma \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{A}_{2}^{\Gamma I}(\theta) \mathbf{y}_{2}^{I}(t)\left.=\mathbf{B}^{\Gamma}(\theta) \mathbf{u} \mathbf{u}^{\Gamma} \mathbf{f}\right) \\
& \text { Dependence on } \theta \in \Theta_{a d} \text { is now localized. The fixed subsystem } 1 \text { is large. Thewiversirv }
\end{aligned}
$$ variable subsystem 2 is small. Idea: Reduce subsystem 1 only.

First Order Optimality Conditions

- The first order necessary optimality conditions are

$$
\begin{aligned}
\mathbf{M}(\theta) \frac{d}{d t} \mathbf{y}(t)+\mathbf{A}(\theta) \mathbf{y}(t) & =\mathbf{B}(\theta) \mathbf{u}(t) \quad t \in[0, T], \\
\mathbf{M}(\theta) \mathbf{y}(0) & =\mathbf{y}_{0}, \\
-\mathbf{M}(\theta) \frac{d}{d t} \boldsymbol{\lambda}(t)+\mathbf{A}^{T}(\theta) \boldsymbol{\lambda}(t) & =-\nabla_{\mathbf{y}} \ell(\mathbf{y}, t, \theta) \quad t \in[0, T], \\
\mathbf{M}(\theta) \boldsymbol{\lambda}(T) & =0 \\
\nabla_{\theta} L(\mathbf{y}(t), \boldsymbol{\lambda}(t), \theta)(\tilde{\theta} & -\theta) \geq 0, \quad \tilde{\theta} \in \Theta_{a d}
\end{aligned}
$$

- Gradient of J is given by $\nabla J(\theta)=\nabla_{\theta} \ell(\mathbf{y}(t), \boldsymbol{\lambda}(t), \theta)$.

Using the DD structure, the state and adjoint equations can be written as

$$
\begin{aligned}
\mathbf{M}_{1}^{I I} \frac{d}{d t} \mathbf{y}_{1}^{I}(t)+\mathbf{M}_{1}^{I \Gamma} \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{A}_{1}^{I I} \mathbf{y}_{1}^{I}(t)+\mathbf{A}_{1}^{I \Gamma} \mathbf{y}^{\Gamma}(t) & =\mathbf{B}_{1}^{I} \mathbf{u}_{1}^{I}(t) \\
\mathbf{M}_{2}^{I I}(\theta) \frac{d}{d t} \mathbf{y}_{2}^{I}(t)+\mathbf{M}_{2}^{I \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{A}_{2}^{I I}(\theta) \mathbf{y}_{2}^{I}(t)+\mathbf{A}_{2}^{I \Gamma}(\theta) \mathbf{y}^{\Gamma}(t) & =\mathbf{B}_{2}^{I}(\theta) \mathbf{u}_{2}^{I}(t) \\
\mathbf{M}_{1}^{\Gamma I} \frac{d}{d t} \mathbf{y}_{1}^{I}(t)+\mathbf{M}^{\Gamma \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{M}_{2}^{\Gamma I}(\theta) \frac{d}{d t} \mathbf{y}_{2}^{I}(t) & \\
+\mathbf{A}_{1}^{\Gamma I} \mathbf{y}_{1}^{I}(t)+\mathbf{A}^{\Gamma \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{A}_{2}^{\Gamma I}(\theta) \mathbf{y}_{2}^{I}(t) & =\mathbf{B}^{\Gamma}(\theta) \mathbf{u}^{\Gamma}(t),
\end{aligned}
$$

$22 / 52$

Using the DD structure, the state and adjoint equations can be written as

$$
\begin{aligned}
& \mathbf{M}_{1}^{I I} \frac{d}{d t} \mathbf{y}_{1}^{I}(t)+\mathbf{M}_{1}^{I \Gamma} \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{A}_{1}^{I I} \mathbf{y}_{1}^{I}(t)+\mathbf{A}_{1}^{I \Gamma} \mathbf{y}^{\Gamma}(t)=\mathbf{B}_{1}^{I} \mathbf{u}_{1}^{I}(t) \\
& \mathbf{M}_{2}^{I I}(\theta) \frac{d}{d t} \mathbf{y}_{2}^{I}(t)+\mathbf{M}_{2}^{I \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{A}_{2}^{I I}(\theta) \mathbf{y}_{2}^{I}(t)+\mathbf{A}_{2}^{I \Gamma}(\theta) \mathbf{y}^{\Gamma}(t)=\mathbf{B}_{2}^{I}(\theta) \mathbf{u}_{2}^{I}(t) \\
& \mathbf{M}_{1}^{\Gamma I} \frac{d}{d t} \mathbf{y}_{1}^{I}(t)+\mathbf{M}^{\Gamma \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{M}_{2}^{\Gamma I}(\theta) \frac{d}{d t} \mathbf{y}_{2}^{I}(t) \\
&+\mathbf{A}_{1}^{\Gamma I} \mathbf{y}_{1}^{I}(t)+\mathbf{A}^{\Gamma \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{A}_{2}^{\Gamma I}(\theta) \mathbf{y}_{2}^{I}(t)=\mathbf{B}^{\Gamma}(\theta) \mathbf{u}^{\Gamma}(t), \\
&-\mathbf{M}_{1}^{I I} \frac{d}{d t} \boldsymbol{\lambda}_{1}^{I}(t)-\mathbf{M}_{1}^{I \Gamma} \frac{d}{d t} \boldsymbol{\lambda}^{\Gamma}(t)+\mathbf{A}_{1}^{I I} \boldsymbol{\lambda}_{1}^{I}(t)+\mathbf{A}_{1}^{I \Gamma} \boldsymbol{\lambda}^{\Gamma}(t)=-\left(\mathbf{C}_{1}^{I}\right)^{T}\left(\mathbf{C}_{1}^{I} \mathbf{y}_{1}^{I}(t)-\mathbf{d}_{1}^{I}\right) \\
&-\mathbf{M}_{2}^{I I}(\theta) \frac{d}{d t} \boldsymbol{\lambda}_{2}^{I}(t)-\mathbf{M}_{2}^{I \Gamma}(\theta) \frac{d}{d t} \boldsymbol{\lambda}^{\Gamma}(t)+\mathbf{A}_{2}^{I I}(\theta) \boldsymbol{\lambda}_{2}^{I}(t)+\mathbf{A}_{2}^{I \Gamma}(\theta) \boldsymbol{\lambda}^{\Gamma}(t)=-\nabla_{\mathbf{y}_{2}^{I}} \widetilde{\ell}(.) \\
&-\mathbf{M}_{1}^{\Gamma} \frac{d}{d t} \boldsymbol{\lambda}_{1}^{I}(t)-\mathbf{M}^{\Gamma \Gamma}(\theta) \frac{d}{d t} \boldsymbol{\lambda}^{\Gamma}(t)-\mathbf{M}_{2}^{\Gamma I}(\theta) \frac{d}{d t} \boldsymbol{\lambda}_{2}^{I}(t) \\
&+\mathbf{A}_{1}^{\Gamma I} \boldsymbol{\lambda}_{1}^{I}(t)+\mathbf{A}^{\Gamma \Gamma}(\theta) \frac{d}{d t} \boldsymbol{\lambda}^{\Gamma}(t)+\mathbf{A}_{2}^{\Gamma I}(\theta) \boldsymbol{\lambda}_{2}^{I}(t)=-\nabla_{\mathbf{y} \Gamma} \widetilde{\ell}(\cdot),
\end{aligned}
$$

To apply model reduction to the system corresponding to fixed subdomain Ω we have to identify how \mathbf{y}_{1}^{I} and $\boldsymbol{\lambda}_{1}^{I}$ interact with other components.

Model Reduction of Fixed Subdomain Problem

We need to reduce

$$
\begin{aligned}
\mathbf{M}_{1}^{I I} \frac{d}{d t} \mathbf{y}_{1}^{I}(t) & =-\mathbf{A}_{1}^{I I} \mathbf{y}_{1}^{I}(t)-\mathbf{M}_{1}^{I \Gamma} \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{B}_{1}^{I} \mathbf{u}_{1}^{I}(t)-\mathbf{A}_{1}^{I \Gamma} \mathbf{y}^{\Gamma}(t) \\
\mathbf{z}_{1}^{I} & =\mathbf{C}_{1}^{I} \mathbf{y}_{1}^{I}(t)-\mathbf{d}_{1}^{I} \\
\mathbf{z}_{1}^{\Gamma} & =-\mathbf{M}_{1}^{\Gamma I} \frac{d}{d t} \mathbf{y}_{1}^{I}-\mathbf{A}_{1}^{\Gamma I} \mathbf{y}_{1}^{I}, \\
-\mathbf{M}_{1}^{I I} \frac{d}{d t} \boldsymbol{\lambda}_{1}^{I}(t) & =-\mathbf{A}_{1}^{I I} \boldsymbol{\lambda}_{1}^{I}(t)+\mathbf{M}_{1}^{I \Gamma} \frac{d}{d t} \boldsymbol{\lambda}^{\Gamma}(t)-\left(\mathbf{C}_{1}^{I}\right)^{T} \mathbf{z}_{1}^{I}-\mathbf{A}_{1}^{I \Gamma} \boldsymbol{\lambda}^{\Gamma}(t) \\
\mathbf{q}_{1}^{I} & =\left(\mathbf{B}_{1}^{I}\right)^{T} \boldsymbol{\lambda}_{1}^{I} \\
\mathbf{q}_{1}^{\Gamma} & =\mathbf{M}_{1}^{\Gamma I} \frac{d}{d t} \boldsymbol{\lambda}_{1}^{I}-\mathbf{A}_{1}^{\Gamma I} \boldsymbol{\lambda}_{1}^{I}
\end{aligned}
$$

For simplicity we assume that

$$
\mathbf{M}_{1}^{I \Gamma}=0 \quad \mathbf{M}_{1}^{\Gamma I}=0
$$

We get

$$
\begin{aligned}
\mathbf{M}_{1}^{I I} \frac{d}{d t} \mathbf{y}_{1}^{I}(t) & =-\mathbf{A}_{1}^{I I} \mathbf{y}_{1}^{I}(t)+\left(\mathbf{B}_{1}^{I} \mid-\mathbf{A}_{1}^{I \Gamma}\right)\binom{\mathbf{u}_{1}^{I}}{\mathbf{y}^{\Gamma}} \\
\binom{\mathbf{z}_{1}^{I}}{\mathbf{z}_{1}^{\Gamma}} & =\binom{-\mathbf{C}_{1}^{I}}{-\mathbf{A}_{1}^{\Gamma I}} \mathbf{y}_{1}^{I}+\binom{\mathbf{I}}{0} \mathbf{d}_{1}^{I}, \\
-\mathbf{M}_{1}^{I I} \frac{d}{d t} \boldsymbol{\lambda}_{1}^{I}(t) & =-\mathbf{A}_{1}^{I I} \boldsymbol{\lambda}_{1}^{I}(t)+\left(-\left(\mathbf{C}_{1}^{I}\right)^{T} \mid-\mathbf{A}_{1}^{I \Gamma}\right)\binom{\mathbf{z}_{1}^{I}}{\boldsymbol{\lambda}^{\Gamma}}, \\
\binom{\mathbf{q}_{1}^{I}}{\mathbf{q}_{1}^{\Gamma}} & =\binom{\left(\mathbf{B}_{1}^{I}\right)^{T}}{-\mathbf{A}_{1}^{\Gamma I}} \boldsymbol{\lambda}_{1}^{I} .
\end{aligned}
$$

This system is exactly of the form needed for balanced truncation model reduction.

Reduced Optimization Problem

- We apply BTMR to the fixed subdomain problem with inputs and output determined by the original inputs to subdomain 1 as well as the interface conditions.
- In the optimality conditions replace the fixed subdomain problem by its reduced order model.
- We can interpret the resulting reduced optimality system as the optimality system of the following reduced optimization problem

$$
\min \int_{0}^{T} \frac{1}{2}\left\|\widehat{\mathbf{C}}_{1}^{I} \widehat{\mathbf{y}}_{1}^{I}-\mathbf{d}_{1}^{I}(t)\right\|_{2}^{2}+\widetilde{\ell}\left(\mathbf{y}^{\Gamma}(t), \mathbf{y}_{2}^{I}(t), t, \theta\right) d t
$$

subject to

$$
\begin{aligned}
& \widehat{\mathbf{M}}_{1}^{I I} \frac{d}{d t} \widehat{\mathbf{y}}_{1}^{I}(t)+\widehat{\mathbf{M}}_{1}^{I \Gamma} \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\widehat{\mathbf{A}}_{1}^{I I} \widehat{\mathbf{y}}_{1}^{I}(t)+\widehat{\mathbf{A}}_{1}^{I \Gamma} \mathbf{y}^{\Gamma}(t)=\widehat{\mathbf{B}}_{1}^{I} \mathbf{u}_{1}^{I}(t) \\
& \mathbf{M}_{2}^{I I}(\theta) \frac{d}{d t} \mathbf{y}_{2}^{I}(t)+\mathbf{M}_{2}^{I \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{A}_{2}^{I I}(\theta) \mathbf{y}_{2}^{I}(t)+\mathbf{A}_{2}^{I \Gamma}(\theta) \mathbf{y}^{\Gamma}(t)=\mathbf{B}_{2}^{I}(\theta) \mathbf{u}_{2}^{I}(t) \\
& \widehat{\mathbf{M}}_{1}^{\Gamma I} \frac{d}{d t} \mathbf{y}_{1}^{I}(t)+\mathbf{M}^{\Gamma \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{M}_{2}^{\Gamma I}(\theta) \frac{d}{d t} \mathbf{y}_{2}^{I}(t) \\
& +\widehat{\mathbf{A}}_{1}^{\Gamma I} \mathbf{y}_{1}^{I}(t)+\mathbf{A}^{\Gamma \Gamma}(\theta) \frac{d}{d t} \mathbf{y}^{\Gamma}(t)+\mathbf{A}_{2}^{\Gamma I}(\theta) \mathbf{y}_{2}^{I}(t)=\mathbf{B}^{\Gamma}(\theta) \mathbf{u}^{\Gamma}(t) \\
& \widehat{\mathbf{y}}_{1}^{I}(0)=\widehat{\mathbf{y}}_{1,0}^{I} \mathbf{y}_{2}^{I}(0)=\mathbf{y}_{2,0}^{I}, \quad \mathbf{y}^{\Gamma}(0)=\mathbf{y}_{0}^{\Gamma}, \\
& \theta \in \Theta_{a d}
\end{aligned}
$$

Error Estimate

If

- there exists $\alpha>0$ such that

$$
\mathbf{v}^{T} \mathbf{A} \mathbf{v} \leq-\alpha \mathbf{v}^{T} \mathbf{M} \mathbf{v}, \quad \forall \mathbf{v} \in \mathbb{R}^{N}
$$

- the gradients $\nabla_{\mathbf{y}_{I}^{(2)}} \widetilde{\ell}\left(\mathbf{y}_{I}^{(2)}, \mathbf{y}_{\Gamma}, t, \theta\right), \nabla_{\mathbf{y}_{\Gamma}} \widetilde{\ell}\left(\mathbf{y}_{I}^{(2)}, \mathbf{y}_{\Gamma}, t, \theta\right)$,
$\nabla_{\theta} \widetilde{\ell}\left(\mathbf{y}_{I}^{(2)}, \mathbf{y}_{\Gamma}, t, \theta\right)$, are Lipschitz continuous in $\mathbf{y}_{I}^{(2)}, \mathbf{y}_{\Gamma}$
- for all $\|\widetilde{\theta}\| \leq 1$ and all $\theta \in \Theta$ the following bound holds

$$
\max \left\{\left\|D_{\theta} \mathbf{M}^{(2)}(\theta) \widetilde{\theta}\right\|,\left\|D_{\theta} \mathbf{A}^{(2)}(\theta) \widetilde{\theta}\right\|,\left\|D_{\theta} \mathbf{B}^{(2)}(\theta) \widetilde{\theta}\right\|\right\} \leq \gamma
$$

then there exists $c>0$ dependent on $\mathbf{u}, \widehat{\mathbf{y}}$, and $\widehat{\boldsymbol{\lambda}}$ such that

$$
\|\nabla J(\theta)-\nabla \widehat{J}(\theta)\|_{L^{2}} \leq \frac{c}{\alpha}\left(\sigma_{n+1}+\ldots+\sigma_{N}\right)
$$

If we assume the convexity condition

$$
\left(\nabla J\left(\widehat{\theta}_{*}\right)-\nabla J\left(\theta_{*}\right)\right)^{T}\left(\widehat{\theta}_{*}-\theta_{*}\right) \geq \kappa\left\|\widehat{\theta}_{*}-\theta_{*}\right\|^{2},
$$

then we obtain the error bound

$$
\left\|\theta_{*}-\widehat{\theta}_{*}\right\| \leq \frac{c}{\alpha \kappa}\left(\sigma_{n+1}+\ldots+\sigma_{N}\right)
$$

Example 1: Shape Optim. Governed by Parabolic Eqn.

- Reference domain $\Omega_{\text {ref }}$

- Optimization problem

$$
\min \int_{0}^{T} \int_{\Gamma_{L} \cup \Gamma_{R}}\left|y-y^{d}\right|^{2} d s d t+\int_{0}^{T} \int_{\Omega_{2}(\theta)}\left|y-y^{d}\right|^{2} d x d t
$$

subject to the differential equation

$$
\begin{array}{rlr}
y_{t}(x, t)-\Delta y(x, t)+y(x, t) & =100 & \text { in } \Omega(\theta) \times(0, T), \\
n \cdot \nabla y(x, t) & =0 & \text { on } \partial \Omega(\theta) \times(0, T), \\
y(x, 0) & =0 & \text { in } \Omega(\theta)
\end{array}
$$

and design parameter constraints $\theta^{\min } \leq \theta \leq \theta^{\max }$.

- We use $k_{T}=3, k_{B}=3$ Bézier control points to specify the top and the bottom boundary of the variable subdomain $\Omega_{2}(\theta)$. The desired temperature y^{d} is computed by specifying the optimal parameter θ_{*} and solving the state equation on $\Omega\left(\theta_{*}\right)$.
- We use automatic differentiation to compute the derivatives with respect to the design variables θ.
- The semi-discretized optimization problems are solved using a projected BFGS method with Armijo line search. The optimization algorithm is terminated when the norm of projected gradient is less than $\epsilon=10^{-4}$.
- The optimal domain

The largest Hankel singular values and the threshold $10^{-4} \sigma_{1}$

Sizes of the full and the reduced order problems

Error in solutions: $\left\|\theta^{*}-\widehat{\theta}^{*}\right\|_{2}=2.3 \cdot 10^{-4}$
Optimal shape parameters θ_{*} and $\widehat{\theta}_{*}$ (rounded to 5 digits) computed by minimizing the full and the reduced order model.

$$
\begin{array}{cc}
\hline \theta_{*} & (1.00,2.0000,2.0000,-2.0000,-2.0000,-1.00) \\
\widehat{\theta}_{*} & (1.00,1.9999,2.0001,-2.0001,-1.9998,-1.00) \\
\hline
\end{array}
$$

The convergence histories of the projected BFGS algorithm applied to the full and the reduced order problems.

convergence history of the objective functionals for the full (+) and reduced (o) order model.

convergence history of the projected gradients for the full (+) and reduced (o) order model.

Example 2: Shape Optim. Governed by Stokes Eqns.

$$
\min _{\theta \in \Theta_{a d}} J(\theta):=\int_{0}^{T} \int_{\Omega(\theta)} \ell(\mathbf{v}(\theta), p(\theta), t, \theta) d x d t
$$

where $\mathbf{v}(\theta), p(\theta)$ solve the Stokes equations

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathbf{v}(x, t)-\nu \Delta \mathbf{v}(x, t)+\nabla p(x, t) & =\mathbf{f}(x, t) & \text { in } \Omega(\theta) \times(0, T] \\
\operatorname{div} \mathbf{v}(x, t) & =0 & \text { in } \Omega(\theta) \times(0, T] \\
(\nu \nabla \mathbf{v}(x, t)+p(x, t)) & =0 & \text { on } \Gamma_{\text {out }}(\theta) \times(0, T] \\
\mathbf{v}(x, t) & =\mathbf{u}(x, t) & \text { on }\left(\Gamma_{D}(\theta) \cup \Gamma_{\text {in }}\right) \times(0, T], \\
\mathbf{v}(x, 0) & =\mathbf{v}_{0}(x) & \text { in } \Omega(\theta) .
\end{aligned}
$$

- We apply the same approach
- Assume that only a small part of the domain depends on the shape parameter θ.
- Use DD to isolate the quantities that depend on θ.
- Use BMTR to reduced the subdomain problem that corresponds to the fixed domain.
- We apply the same approach
- Assume that only a small part of the domain depends on the shape parameter θ.
- Use DD to isolate the quantities that depend on θ.
- Use BMTR to reduced the subdomain problem that corresponds to the fixed domain.
- But (discretized) Stokes eqns. lead to a DAE (Hessenberg index 2), which makes approach and analysis more complicated.
- Standard BTMR cannot be used. Extension for Stokes type systems exist (Stykel 2006, Heinkenschloss/Sorensen/Sun 2008).
- Spatial domain decomposition for the Stokes system requires care to ensure well-posedness of the coupled problem as well as of the subdomain problems. See, e.g., Toselli/Widlund book for approaches.
- We use discretization with discontinuous pressures along the subdomain interface. Subdomain pressures are represented as a constant plus a pressure with zero spatial average.
- Error analysis for the shape optimization exists for the case when the objective function corresponding to the fixed subdomain does not explicitly depend on pressure (A.,Heinkenschloss,Hoppe 2011).

Domain Decomposition: Discontinuous Pressure

 Γ| Ω_{1} | $\Omega_{2}(\theta)$ | Ω_{1} |
| :--- | :--- | :--- |

- On each subdomain, the pressure is written as the sum of a constant pressure plus a pressure with zero spatial average. \mathbf{p}_{j}^{I} is the pressure in Ω_{j} with average $0 ; \mathbf{p}_{0}$ the vector constant pressures. There is no pressure associated with the interface.
- The Stokes matrix times vector multiplication can be decomposed into

$$
\mathbf{S y}=\left(\begin{array}{cc|cc|cc}
\mathbf{A}_{1}^{I I} & \left(\mathbf{B}_{1}^{I I}\right)^{T} & 0 & 0 & \mathbf{A}_{1}^{I \Gamma} & 0 \\
\mathbf{B}_{1}^{I I} & 0 & 0 & 0 & \mathbf{B}_{1}^{\Gamma I} & 0 \\
\hline 0 & 0 & \mathbf{A}_{2}^{I I} & \left(\mathbf{B}_{2}^{I I}\right)^{T} & \mathbf{A}_{2}^{I \Gamma} & 0 \\
0 & 0 & \mathbf{B}_{2}^{I I} & 0 & \mathbf{B}_{2}^{\Gamma I} & 0 \\
\hline \mathbf{A}_{1}^{\Gamma I} & \left(\mathbf{B}_{1}^{\Gamma I}\right)^{T} & \mathbf{A}_{2}^{\Gamma I} & \left(\mathbf{B}_{2}^{\Gamma I}\right)^{T} & \mathbf{A}^{\Gamma \Gamma} & \left(\mathbf{B}_{0}\right)^{T} \\
0 & 0 & 0 & 0 & \mathbf{B}_{0} & 0
\end{array}\right)\left(\begin{array}{c}
\mathbf{v}_{1}^{I} \\
\mathbf{p}_{1}^{I} \\
\hline \mathbf{v}_{2}^{I} \\
\mathbf{p}_{2}^{I} \\
\hline \mathbf{v}^{\Gamma} \\
\mathbf{p}_{0}
\end{array}\right)
$$

- Zeros 0 in last row and column block are important to derive error bound/GEORGE for the coupled reduced problem (A.,Heinkenschloss,Hoppe 2011).

Example

Geometry motivated by biochip

$\min _{\theta^{\min } \leq \theta \leq \theta^{\max }} J(\theta)=\int_{0}^{T} \int_{\Omega_{\mathrm{obs}}} \frac{1}{2}|\nabla \times \mathbf{v}(x, t ; \theta)|^{2} d x+\int_{\Omega_{2}(\theta)} \frac{1}{2}\left|\mathbf{v}(x, t ; \theta)-\mathbf{v}^{d}(x, t)\right|^{2} d x d t$
where $\mathbf{v}(\theta)$ and $p(\theta)$ solve the Stokes equations

$$
\begin{aligned}
\mathbf{v}_{t}(x, t)-\mu \Delta \mathbf{v}(x, t)+\nabla p(x, t) & =\mathbf{f}(x, t), & & \text { in } \Omega(\theta) \times(0, T), \\
\nabla \cdot \mathbf{v}(x, t) & =0, & & \text { in } \Omega(\theta) \times(0, T), \\
\mathbf{v}(x, t) & =\mathbf{v}_{\text {in }}(x, t) & & \text { on } \Gamma_{\text {in }} \times(0, T), \\
\mathbf{v}(x, t) & =\mathbf{0} & & \text { on } \Gamma_{\text {lat }} \times(0, T), \\
-(\mu \nabla \mathbf{v}(x, t)-p(x, t) I) \mathbf{n} & =0 & & \text { on } \Gamma_{\text {out }} \times(0, T), \\
\mathbf{v}(x, 0) & =\mathbf{0} & & \text { in } \Omega(\theta) .
\end{aligned}
$$

Here $\overline{\Omega(\theta)}=\overline{\Omega_{1}} \cup \overline{\Omega_{2}(\theta)}$ and $\overline{\Omega_{2}(\theta)}$ is the top left yellow, square domain. The observation region $\Omega_{\text {obs }}$ is part of the two reservoirs.
We have 12 shape parameters, $\theta \in \mathbb{R}^{12}$.

grid	m	$N_{\mathbf{v}, \text { dof }}^{(1)}$	$N_{\widehat{\mathbf{v}}, \text { dof }}^{(1)}$	$N_{\mathbf{v}, \text { dof }}$	$N_{\widehat{\mathbf{v}}, \text { dof }}$
1	149	4752	23	4862	133
2	313	7410	25	7568	183
3	361	11474	26	11700	252
4	537	16472	29	16806	363

The number m of observations in $\Omega_{\text {obs }}$, the number of velocities $N_{\mathbf{v}, \text { dof }}^{(1)}, N_{\widehat{\mathbf{v}}, \text { dof }}^{(1)}$ in the fixed subdomain Ω_{1} for the full and reduced order model, the number of velocities $N_{\mathbf{v}, d o f}, N_{\widehat{\mathbf{v}}, d o f}$ in the entire domain Ω for the full and reduced order model for five discretizations.

- Error in optimal parameter computed sing the full and the reduced order model (rounded to 5 digits)

θ^{*}	$(9.8987,9.7510,9.7496,9.8994,9.0991,9.2499,9.2504,9.0989)$
$\widehat{\theta}^{*}$	$(9.9026,9.7498,9.7484,9.9021,9.0940,9.2514,9.2511,9.0956)$

- The convergence histories of the projected BFGS algorithm applied to the full and the reduced order problems.

convergence history of the objective functionals for the full $(+)$ and reduced (o) order model.

convergence history of the projected gradients for the full $(+)$ and duced (o) order model.

Outline

Model Reduction and Optimal Control of Linear-Quadratic Problems

Model Reduction and Optimization of Problems with Localized Nonlinearities

Regularity of Stokes Equation with Slip Boundary Conditions on Sobolev
Domains

Extrude-Swell Problem

UNIVERSITY

Stokes FBP

$$
\begin{array}{rlrl}
-\operatorname{div}(\boldsymbol{\sigma}) & =\boldsymbol{f}, & \operatorname{div}(\boldsymbol{u})=0 & \\
\boldsymbol{u} & =\boldsymbol{g} & & \text { in } \Omega \\
\boldsymbol{\sigma} \boldsymbol{\nu} & =\mathbf{0} & & \text { on } \Gamma_{\text {inlet }} \cup \Gamma_{\text {wall }} \\
\boldsymbol{u} \cdot \boldsymbol{\nu} & =0, & \boldsymbol{\sigma} \boldsymbol{\nu}=\alpha \mathcal{H} \boldsymbol{\nu} & \\
\text { on } \Gamma_{\text {out }} \\
\text { on } \Gamma_{\text {free }},
\end{array}
$$

where $\boldsymbol{\sigma}=\eta\left(\nabla \boldsymbol{u}+\nabla \boldsymbol{u}^{\top}\right)-p \boldsymbol{I}$ is the stress tensor, η is viscosity, α is surface tension.
$41 / 52$

Formulation challenge

- Try to use the necessary regularity.
- Stokes equations.
- Oversubscribed boundary conditions.
- Moving domain.
- The curvature equation.

How to address them?

- Analyze regularity of the free surface.
- Prove well-posedness of the Stokes with mixed B.C.
- Domain with same regularity of free surface.
- Use non-linear solver techniques.
- Fixed point, implicit function theorem, etc ...
- Solve in a reference domain.

Stokes Problem Slip (with friction) Boundary Conditions

- $\Omega \subset \mathbb{R}^{n}$ is of class $W_{s}^{2-1 / s}$, with $s>n$.
- Start with the Stokes equations

$$
-\operatorname{div}(\boldsymbol{\sigma}(\boldsymbol{u}, p))=\boldsymbol{f}, \quad \operatorname{div}(\boldsymbol{u})=g \quad \text { in } \Omega
$$

- and add the Navier B.C. i.e. slip with friction

$$
\boldsymbol{u} \cdot \boldsymbol{\nu}=\phi, \quad \beta \boldsymbol{T} \boldsymbol{u}+\boldsymbol{T}^{\top} \boldsymbol{\sigma}(\boldsymbol{u}, p) \boldsymbol{\nu}=\boldsymbol{\psi} \quad \text { on } \partial \Omega
$$

where $\boldsymbol{T}=\boldsymbol{I}-\boldsymbol{\nu} \otimes \boldsymbol{\nu}$ is the projection operator into the tangent plane of $\partial \Omega$.

$$
\boldsymbol{\sigma}=2 \eta \varepsilon(\boldsymbol{u})-\boldsymbol{I} p, \quad \boldsymbol{\varepsilon}(\boldsymbol{u})=\frac{\nabla u+\nabla u^{\top}}{2}
$$

Variational Equation (pure slip)

Given \mathcal{F}, find $(\boldsymbol{u}, p) \in \mathcal{E} \phi \boldsymbol{\nu} \oplus \stackrel{\circ}{X}_{r}(\Omega)$ such that

$$
\mathcal{S}_{\Omega}(\boldsymbol{u}, p)(\boldsymbol{v}, q)=\mathcal{F}(\boldsymbol{v}, q) \quad \forall(\boldsymbol{v}, q) \in{\stackrel{\circ}{X^{\prime}}}^{(\Omega)}
$$

and the continuity bounds

$$
\|(\boldsymbol{u}, p)\|_{X_{r}(\Omega)} \leq C_{\Omega, \eta, n, r}\left(\|\mathcal{F}\|_{X_{r^{\prime}}(\Omega)}+\|\phi\|_{W_{r}^{1-1 / r}(\partial \Omega)}\right)
$$

where the Stokes operator in Ω reads

$$
\mathcal{S}_{\Omega}(\boldsymbol{u}, p)(\boldsymbol{v}, q):=\int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{u}): \boldsymbol{\varepsilon}(\boldsymbol{v})-p \operatorname{div}(\boldsymbol{v})+q \operatorname{div}(\boldsymbol{u}) .
$$

Variational Formulation (Spaces)

- $\stackrel{\circ}{X}_{r}:=V_{r}(\Omega) \times L_{0}^{r}(\Omega), s^{\prime} \leq r \leq s, s>n$.
- $V_{r}(\Omega):=\left\{\boldsymbol{v} \in W_{r}^{1}(\Omega) / Z(\Omega): \boldsymbol{v} \cdot \boldsymbol{\nu}=0\right\}$.

It is necessary to identify the kernel of \mathcal{S}_{Ω}

- $L_{0}^{r}(\Omega):=L^{r}(\Omega) / \mathbb{R}$.
- $Z(\Omega):=$

$$
\left\{\boldsymbol{z}(x)=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}: \boldsymbol{x} \in \Omega, \boldsymbol{A}=-\boldsymbol{A}^{\top} \in \mathbb{R}^{n \times n}, \boldsymbol{b} \in \mathbb{R}^{n},\left.\boldsymbol{z} \cdot \boldsymbol{\nu}\right|_{\partial \Omega}=0\right\} .
$$

Earlier result: Amrouche '11 $C^{1,1}$ domain.

Domain Decomposition

- We cover the domain with finite number of balls

$$
\bar{\Omega} \subset \cup_{i=1}^{k} B\left(x_{i}, \delta_{i} / 2\right) .
$$

- Associate to it a smooth partition of unity $\left\{\varphi_{i}\right\}_{i=1}^{k}$.
- And smooth cut-off functions, $\left\{\varrho_{i}\right\}_{i=1}^{k}$, supp $\varrho_{i} \subset B\left(x_{i}, \delta_{i}\right), \rho_{i}=1$ on $B\left(x_{i}, \delta_{i} / 2\right)$.
- Using Piola transform

$$
\begin{aligned}
&(\hat{\boldsymbol{v}}, \hat{q}) \mapsto(\hat{\boldsymbol{P}} \hat{\boldsymbol{v}}, \hat{q}) \circ \Psi^{-1}=(\boldsymbol{v}, q) \\
&(\boldsymbol{v}, q) \mapsto\left(\boldsymbol{P}^{-1} \boldsymbol{v}, q\right) \circ \hat{\Psi}=(\hat{\boldsymbol{v}}, \hat{q}) \\
& \hat{\boldsymbol{v}} \cdot \hat{\boldsymbol{\nu}} \mathrm{d} \hat{s}=\boldsymbol{v} \cdot \boldsymbol{\nu} \mathrm{d} s
\end{aligned}
$$

Space Decomposition

Restriction map

$$
\begin{aligned}
& \mathcal{R}_{\varrho_{i}}: \stackrel{\circ}{X}_{r}(\Omega) \rightarrow \stackrel{\circ}{X}_{r}\left(\hat{\Theta}_{i}\right) \\
& (\boldsymbol{u}, p) \mapsto \hat{\mathcal{P}}_{i}^{-1}\left(\varrho_{i} \boldsymbol{u}, \varrho_{i} p\right)
\end{aligned}
$$

Projection map

$$
\begin{array}{r}
\hat{\mathcal{R}}_{\varphi_{i}}: \stackrel{\circ}{X}_{r}\left(\hat{\Theta}_{i}\right) \rightarrow \stackrel{\circ}{X}_{r}(\Omega) \\
\quad(\hat{\boldsymbol{v}}, \hat{q}) \mapsto \varphi_{i} \hat{\mathcal{P}}_{i}(\hat{\boldsymbol{v}}, \hat{q})
\end{array}
$$

continuous only when Piola matrix is in $W_{s}^{2}(\Omega)$.

- Given $(\boldsymbol{u}, p) \in \stackrel{\circ}{X}_{r}(\Omega)$, we have

$$
\begin{aligned}
(\boldsymbol{u}, p)=\sum_{i=1}^{k} \varphi_{i}(\boldsymbol{u}, p) & =\sum_{i=1}^{k} \varphi_{i}\left(\varrho_{i} \boldsymbol{u}, \varrho_{i} p\right)=\sum_{i=1}^{k} \varphi_{i} \hat{\mathcal{P}}_{i} \hat{\mathcal{P}}_{i}^{-1}\left(\varrho_{i} \boldsymbol{u}, \varrho_{i} p\right) \\
& =\sum_{i=1}^{k} \hat{\mathcal{R}}_{\varphi_{i}} \underbrace{\mathcal{R}_{\varrho_{i}}(\boldsymbol{u}, p)}_{\in \grave{X}_{r}\left(\hat{\Theta}_{i}\right)}
\end{aligned}
$$

which implies $\stackrel{\circ}{X}_{r}(\Omega)=\sum_{i=1}^{k} \hat{\mathcal{R}}_{\varphi_{i}} \stackrel{\circ}{X}_{r}\left(\hat{\Theta}_{i}\right)$.

- Similarly for the dual space

$$
\dot{X}_{r}(\Omega)^{*}=\sum_{i=1}^{k} \hat{\mathcal{R}}_{\varphi_{i}}^{*} \stackrel{\circ}{X}_{r}\left(\hat{\Theta}_{i}\right)^{*}
$$

Operator Decomposition

$$
\begin{aligned}
\mathcal{S}_{\Omega}(\boldsymbol{u}, p) \hat{\mathcal{R}}_{\varphi_{i}}(\hat{\boldsymbol{v}}, \hat{q})= & \left(\mathcal{S}_{\Omega_{i}}\left(\varphi_{i} \boldsymbol{u}, \varphi_{i} p\right)+\mathcal{K}_{i}(\boldsymbol{u}, p)\right) \hat{\mathcal{P}}_{i}(\hat{v}, \hat{q}) \\
& +\left\langle\varepsilon\left(\varphi_{i} \boldsymbol{u}\right), \varepsilon\left(\hat{\boldsymbol{P}}_{i} \hat{\boldsymbol{v}}\right) \circ \Psi^{-1}\right\rangle_{\Omega_{\lambda}} \\
= & \underbrace{\tilde{\mathcal{S}}_{i}}_{\text {Invertible }} \mathcal{R}_{\varphi_{i}}(\boldsymbol{u}, p)(\hat{\boldsymbol{v}}, \hat{q}) \\
& +\underbrace{\mathcal{C}_{\varphi_{i}} \mathcal{R}_{\varphi_{i}}(\boldsymbol{u})+\mathcal{K}_{i}(\boldsymbol{u}, p) \hat{\mathcal{P}}_{i}(\hat{\boldsymbol{v}}, \hat{q})}_{\text {Compact }}
\end{aligned}
$$

Pesudo-inverse

Consider the operator

$$
\mathcal{S}_{\Omega}^{\dagger}:=\sum_{i=1}^{k} \hat{\mathcal{R}}_{\varrho_{i}} \tilde{\mathcal{S}}_{i}^{-1} \hat{\mathcal{R}}_{\varphi_{i}}^{*}
$$

Then

$$
\mathcal{S}_{\Omega}^{\dagger} \mathcal{S}_{\Omega}=\mathcal{I}_{X_{r}(\Omega)}+\sum_{i=1}^{k} \underbrace{\hat{\mathcal{R}}_{\varrho_{i}} \tilde{\mathcal{S}}_{i}^{-1}\left(\mathcal{C}_{i} \mathcal{R}_{\varphi_{i}}+\hat{\mathcal{P}}_{i}^{*} \mathcal{K}_{i}\right)}_{\text {compact }} .
$$

Similarly

$$
\mathcal{S}_{\Omega} \mathcal{S}_{\Omega}^{\dagger}=\text { identity }+ \text { compact }
$$

Therefore \mathcal{S}_{Ω} has a pseudo-inverse, which implies $\operatorname{dim} N_{\mathcal{S}_{\Omega}}<\infty, \quad \operatorname{codim} R_{\mathcal{S}_{\Omega}}<\infty$.

\mathcal{S}_{Ω} and \mathcal{S}_{Ω}^{*} are Injective

- Problem satisfies the Brezzi's theorem for Hilbert space case. This ensures the uniqueness of solution for

$$
2 \leq r \leq s
$$

- Let $r_{0}=s^{\prime}<2$. Consider the homogeneous problem, we need to show that $(\boldsymbol{u}, p)=0$.
Use the method by Galdi-Simader-Sohr '99 to improve the integrability of the function to some $r_{k}>2$, to conclude.

Index Theory of Fredholm Operators

Let $\mathcal{A}: X \rightarrow Y$ has a pseudo-inverse. \mathcal{A} is bijective if and only if \mathcal{A} and \mathcal{A}^{*} are injective.

Summary:

- Using index theory we have shown the well-posedness of the Stokes problem with slip boundary condition.
- under mild domain regularity i.e. $C^{1, \epsilon}$, earlier result Amrouche '11 $C^{1,1}$ domain.
- We have provided a constructive approach based on domain decomposition.
- Extension to slip-with-friction is a direct corollary.
"dimension independent"

UNIVERSITY

Conclusions

- Applied reduced order models in optimization context.
- Important to approximate state and adjoint equations.
- We have integrated domain decomposition and model reduction for systems with small localized nonlinearities. In our case, nonlinearities arise from dependence on shape parameters.
- We have proven global, a-priori estimates for the error between the solution of the original and the reduced order problem.
- Error estimates depend on balanced truncation error estimates. (Could use other model reduction techniques).
- Efficiency of reduced order model depends size of subdomain with nonlinearity, and interface.
- Presented existence theory for Stokes equations with Slip boundary for $C^{1, \epsilon}$ domain, which is much better than earlier known results by Amrouche '11 $\left(C^{1,1}\right)$ domain.

