Optimization and Model Reduction of Time Dependent PDE-Constrained Optimization Problems

Harbir Antil

Department of Mathematical Sciences George Mason University, Fairfax, Virginia hantil@gmu.edu

Centro Stefano Franscini, Ascona, Swizterland September 1-6, 2013

Collaborators: Profs. Heinkenschloss, Hoppe, Sorensen, Nochetto and Dr. Sodré

Outline

Model Reduction and Optimal Control of Linear-Quadratic Problems

Model Reduction and Optimization of Problems with Localized Nonlinearities

Regularity of Stokes Equation with Slip Boundary Conditions on Sobolev Domains

Outline

Model Reduction and Optimal Control of Linear-Quadratic Problems

Model Reduction and Optimization of Problems with Localized Nonlinearities

Regularity of Stokes Equation with Slip Boundary Conditions on Sobolev Domains

The Problem

 We consider optimal control problems governed by advection diffusion equations

$$\frac{\partial}{\partial t}y(x,t) - \nabla(k(x)\nabla y(x,t)) + V(x)\cdot\nabla y(x,t)) = f(x,t)$$

in $\Omega\times(0,T).$ The optimization variables are related to the right hand side f or to boundary data.

 After (finite element) discretization in space the optimal control problems are of the form

$$\min J(\mathbf{u}) \equiv \frac{1}{2} \int_0^T \|\mathbf{C}\mathbf{y}(t) + \mathbf{D}\mathbf{u}(t) - \mathbf{d}(t)\|^2 dt,$$

where $\mathbf{y}(t)=\mathbf{y}(\mathbf{u};t)$ is the solution of

$$\begin{aligned} \mathbf{M}\mathbf{y}'(t) &= \mathbf{A}\mathbf{y}(t) + \mathbf{B}\mathbf{u}(t), \qquad t \in (0,T), \\ \mathbf{y}(0) &= \mathbf{y}_0. \end{aligned}$$

Here $\mathbf{y}(t) \in \mathbb{R}^N$, $\mathbf{M}, \mathbf{A} \in \mathbb{R}^{N \times N}$, $\mathbf{B} \in \mathbb{R}^{N \times m}$, with N large.

The Reduced Order Problem

- Projection matrices $\mathbf{W}, \mathbf{V} \in \mathbb{R}^{N \times n}$ with $n \ll N$ small.
- Replace states y(t) by Vŷ(t) and project state equation by W. This gives reduced order state equation

$$\underbrace{\mathbf{W}^T \mathbf{M} \mathbf{V}}_{=\widehat{\mathbf{M}}} \widehat{\mathbf{y}}'(t) = \underbrace{\mathbf{W}^T \mathbf{A} \mathbf{V}}_{=\widehat{\mathbf{A}}} \widehat{\mathbf{y}}(t) + \underbrace{\mathbf{W}^T \mathbf{B}}_{=\widehat{\mathbf{B}}} \mathbf{u}(t)$$

and reduced order objective function

$$\int_0^T \|\underbrace{\mathbf{CV}}_{=\widehat{\mathbf{C}}} \widehat{\mathbf{y}}(t) + \mathbf{D}\mathbf{u}(t) - \mathbf{d}(t)\|^2 dt.$$

The reduced optimal control problem is

$$\min \widehat{J}(\mathbf{u}) \equiv \frac{1}{2} \int_0^T \|\widehat{\mathbf{C}}\widehat{\mathbf{y}}(t) + \mathbf{D}\mathbf{u}(t) - \mathbf{d}(t)\|^2 dt$$

where $\widehat{\mathbf{y}}(t)=\widehat{\mathbf{y}}(\mathbf{u};t)$ solves

$$\begin{split} \widehat{\mathbf{M}} \widehat{\mathbf{y}}'(t) &= \widehat{\mathbf{A}} \widehat{\mathbf{y}}(t) + \widehat{\mathbf{B}} \mathbf{u}(t), \qquad t \in (0,T), \\ \widehat{\mathbf{y}}(0) &= \widehat{\mathbf{y}}_0. \end{split}$$

Here $\widehat{\mathbf{y}}(t) \in \mathbb{R}^n$, $\widehat{\mathbf{M}}, \widehat{\mathbf{A}} \in \mathbb{R}^{n \times n}$, $\widehat{\mathbf{B}} \in \mathbb{R}^{n \times m}$, with $n \ll N$ small.

Error Analysis (Standard)

- ▶ U Hilbert space.
- ▶ Let $\mathbf{u}_* = \operatorname{argmin}_{\mathbf{u} \in \mathbf{U}} J(\mathbf{u})$ be the minimizer of the original problem and let $\widehat{\mathbf{u}}_* = \operatorname{argmin}_{\mathbf{u} \in \mathbf{U}} \widehat{J}(\mathbf{u})$ a minimizer of the reduced problem.
- \blacktriangleright Assume that J is a strictly convex quadratic function, i.e., that there exists $\kappa>0$ such that

$$\langle \mathbf{u} - \mathbf{w}, \nabla J(\mathbf{u}) - \nabla J(\mathbf{w}) \rangle_{\mathbf{U}} \geq \kappa \|\mathbf{u} - \mathbf{w}\|_{\mathbf{U}}^2$$
 for all $\mathbf{u}, \mathbf{w} \in \mathbf{U}$.

 \blacktriangleright Set $\mathbf{u}=\mathbf{u}_*$ and $\mathbf{w}=\widehat{\mathbf{u}}_*$ and use

$$\nabla J(\mathbf{u}_*) = \nabla \widehat{J}(\widehat{\mathbf{u}}_*) = 0$$

to get

$$\begin{split} \|\mathbf{u}_* - \widehat{\mathbf{u}}_*\|_{\mathbf{U}} \|\nabla \widehat{J}(\widehat{\mathbf{u}}_*) - \nabla J(\widehat{\mathbf{u}}_*)\|_{\mathbf{U}} \\ &= \|\mathbf{u}_* - \widehat{\mathbf{u}}_*\|_{\mathbf{U}} \|\nabla J(\mathbf{u}_*) - \nabla J(\widehat{\mathbf{u}}_*)\|_{\mathbf{U}} \\ &\geq \langle \mathbf{u}_* - \widehat{\mathbf{u}}_*, \nabla J(\mathbf{u}_*) - \nabla J(\widehat{\mathbf{u}}_*) \rangle_{\mathbf{U}} \geq \kappa \|\mathbf{u}_* - \widehat{\mathbf{u}}_*\|_{\mathbf{U}}^2. \end{split}$$

Hence

$$\|\mathbf{u}_* - \widehat{\mathbf{u}}_*\|_{\mathbf{U}} \le \kappa^{-1} \|\nabla \widehat{J}(\widehat{\mathbf{u}}_*) - \nabla J(\widehat{\mathbf{u}}_*)\|_{\mathbf{U}}.$$

Need to estimate error in the gradients to get estimate for error in the solution.

Gradient Computation

► For the original problem

$$\begin{split} \mathbf{M}\mathbf{y}'(t) &= \mathbf{A}\mathbf{y}(t) + \mathbf{B}\mathbf{u}(t), & t \in (0,T), \quad \mathbf{y}(0) = \mathbf{y}_0, \\ \mathbf{z}(t) &= \mathbf{C}\mathbf{y}(t) + \mathbf{D}\mathbf{u}(t) - \mathbf{d}(t), & t \in (0,T) \\ -\mathbf{M}^T \boldsymbol{\lambda}'(t) &= \mathbf{A}^T \boldsymbol{\lambda}(t) + \mathbf{C}^T \mathbf{z}(t), & t \in (0,T), \quad \boldsymbol{\lambda}(T) = 0, \\ \nabla J(\mathbf{u}) &= \mathbf{q}(t) = \mathbf{B}^T \boldsymbol{\lambda}(t) + \mathbf{D}^T \mathbf{z}(t), & t \in (0,T) \end{split}$$

► For the reduced problem

$$\begin{split} \widehat{\mathbf{M}}\widehat{\mathbf{y}}'(t) &= \widehat{\mathbf{A}}\widehat{\mathbf{y}}(t) + \widehat{\mathbf{B}}\mathbf{u}(t), & t \in (0,T) \quad \widehat{\mathbf{y}}(0) = \widehat{\mathbf{y}}_{0}, \\ \widehat{\mathbf{z}}(t) &= \widehat{\mathbf{C}}\widehat{\mathbf{y}}(t) + \mathbf{D}\mathbf{u}(t) - \mathbf{d}(t), & t \in (0,T) \\ -\widehat{\mathbf{M}}^{T}\widehat{\boldsymbol{\lambda}}'(t) &= \widehat{\mathbf{A}}^{T}\widehat{\boldsymbol{\lambda}}(t) + \widehat{\mathbf{C}}^{T}\widehat{\mathbf{z}}(t), & t \in (0,T) \quad \widehat{\boldsymbol{\lambda}}(T) = 0, \\ \nabla \widehat{J}(\mathbf{u}) &= \widehat{\mathbf{q}}(t) = \widehat{\mathbf{B}}^{T}\widehat{\boldsymbol{\lambda}}(t) + \mathbf{D}^{T}\widehat{\mathbf{z}}(t), & t \in (0,T) \end{split}$$

Requirement on Reduced Order Model

Need to approximte state system

$$\mathbf{My}'(t) = \mathbf{Ay}(t) + \mathbf{Bu}(t), \quad t \in (0, T)$$
$$\mathbf{z}(t) = \mathbf{Cy}(t) + \mathbf{Du}(t), \quad t \in (0, T)$$

and corresponding adjoint system

$$-\mathbf{M}\boldsymbol{\lambda}'(t) = \mathbf{A}^{T}\boldsymbol{\lambda}(t) + \mathbf{C}\mathbf{w}(t), \quad t \in (0,T)$$
$$\mathbf{q}(t) = \mathbf{B}^{T}\boldsymbol{\lambda}(t) + \mathbf{D}^{T}\mathbf{w}(t), \quad t \in (0,T)$$

Need to approximate input-to-output maps

$$\mathbf{u} \mapsto \mathbf{z}$$
 and $\mathbf{w} \mapsto \mathbf{q}$.

▶ We assume y₀ = 0 to simplify presentation. Inhomogeneous initial data can be handled with modification (Heinkenschloss, Reis, Antoulas 2011).

Want reduced order state and adjoint systems

$$\widehat{\mathbf{M}}\widehat{\mathbf{y}}'(t) = \widehat{\mathbf{A}}\widehat{\mathbf{y}}(t) + \widehat{\mathbf{B}}\mathbf{u}(t), \quad t \in (0, T)$$
$$\widehat{\mathbf{z}}(t) = \widehat{\mathbf{C}}\widehat{\mathbf{y}}(t) + \mathbf{D}\mathbf{u}(t), \quad t \in (0, T),$$
$$\widehat{\mathbf{M}}^T\widehat{\boldsymbol{\lambda}}'(t) = \widehat{\mathbf{A}}^T\widehat{\boldsymbol{\lambda}}(t) + \widehat{\mathbf{C}}^T\mathbf{w}(t), \quad t \in (0, T)$$
$$\widehat{\mathbf{q}}(t) = \widehat{\mathbf{B}}^T\widehat{\boldsymbol{\lambda}}(t) + \mathbf{D}^T\mathbf{w}(t), \quad t \in (0, T)$$

with $\widehat{\mathbf{M}} = \mathbf{W}^T \mathbf{M} \mathbf{V}, \ \widehat{\mathbf{A}} = \mathbf{W}^T \mathbf{A} \mathbf{V}, \ \widehat{\mathbf{B}} = \mathbf{W}^T \mathbf{B}, \ \text{and} \ \widehat{\mathbf{C}} = \mathbf{C} \mathbf{V},$

such that we have error bounds

 $\|\mathbf{z} - \widehat{\mathbf{z}}\|_{L^2} \le \text{ tol } \|\mathbf{u}\|_{L^2} \quad \text{ and } \quad \|\mathbf{q} - \widehat{\mathbf{q}}\|_{L^2} \le \text{ tol } \|\mathbf{w}\|_{L^2}. \qquad (*)$

for any given inputs ${\bf u}$ and ${\bf w},$ where tol $% {\bf v}$ is a user specified tolerance.

Want reduced order state and adjoint systems

$$\widehat{\mathbf{M}}\widehat{\mathbf{y}}'(t) = \widehat{\mathbf{A}}\widehat{\mathbf{y}}(t) + \widehat{\mathbf{B}}\mathbf{u}(t), \quad t \in (0, T)$$
$$\widehat{\mathbf{z}}(t) = \widehat{\mathbf{C}}\widehat{\mathbf{y}}(t) + \mathbf{D}\mathbf{u}(t), \quad t \in (0, T),$$
$$\widehat{\mathbf{M}}^T\widehat{\boldsymbol{\lambda}}'(t) = \widehat{\mathbf{A}}^T\widehat{\boldsymbol{\lambda}}(t) + \widehat{\mathbf{C}}^T\mathbf{w}(t), \quad t \in (0, T)$$
$$\widehat{\mathbf{q}}(t) = \widehat{\mathbf{B}}^T\widehat{\boldsymbol{\lambda}}(t) + \mathbf{D}^T\mathbf{w}(t), \quad t \in (0, T)$$

with $\widehat{\mathbf{M}} = \mathbf{W}^T \mathbf{M} \mathbf{V}$, $\widehat{\mathbf{A}} = \mathbf{W}^T \mathbf{A} \mathbf{V}$, $\widehat{\mathbf{B}} = \mathbf{W}^T \mathbf{B}$, and $\widehat{\mathbf{C}} = \mathbf{C} \mathbf{V}$,

such that we have error bounds

 $\|\mathbf{z} - \widehat{\mathbf{z}}\|_{L^2} \le \text{ tol } \|\mathbf{u}\|_{L^2} \quad \text{ and } \quad \|\mathbf{q} - \widehat{\mathbf{q}}\|_{L^2} \le \text{ tol } \|\mathbf{w}\|_{L^2}. \qquad (*)$

for any given inputs \mathbf{u} and \mathbf{w} , where tol is a user specified tolerance.

If the system is stable (Re(λ(A)) < 0), controllable and observable, we can use Balanced Truncation Model Reduction (BTMR). BTMR error bound: For any given inputs u and w

$$\|\mathbf{z} - \widehat{\mathbf{z}}\|_{L^2} \le 2(\sigma_{n+1} + \ldots + \sigma_N) \|\mathbf{u}\|_{L^2},$$

$$\|\mathbf{q} - \widehat{\mathbf{q}}\|_{L^2} \le 2(\sigma_{n+1} + \ldots + \sigma_N) \|\mathbf{w}\|_{L^2},$$

where $\sigma_1 \ge \ldots \ge \sigma_n \ge \sigma_{n+1} \ge \ldots \sigma_N \ge 0$ are the Hankel singular values.

Want reduced order state and adjoint systems

$$\widehat{\mathbf{M}}\widehat{\mathbf{y}}'(t) = \widehat{\mathbf{A}}\widehat{\mathbf{y}}(t) + \widehat{\mathbf{B}}\mathbf{u}(t), \quad t \in (0, T)$$
$$\widehat{\mathbf{z}}(t) = \widehat{\mathbf{C}}\widehat{\mathbf{y}}(t) + \mathbf{D}\mathbf{u}(t), \quad t \in (0, T),$$
$$\widehat{\mathbf{M}}^T\widehat{\boldsymbol{\lambda}}'(t) = \widehat{\mathbf{A}}^T\widehat{\boldsymbol{\lambda}}(t) + \widehat{\mathbf{C}}^T\mathbf{w}(t), \quad t \in (0, T)$$
$$\widehat{\mathbf{q}}(t) = \widehat{\mathbf{B}}^T\widehat{\boldsymbol{\lambda}}(t) + \mathbf{D}^T\mathbf{w}(t), \quad t \in (0, T)$$

with $\widehat{\mathbf{M}} = \mathbf{W}^T \mathbf{M} \mathbf{V}$, $\widehat{\mathbf{A}} = \mathbf{W}^T \mathbf{A} \mathbf{V}$, $\widehat{\mathbf{B}} = \mathbf{W}^T \mathbf{B}$, and $\widehat{\mathbf{C}} = \mathbf{C} \mathbf{V}$,

such that we have error bounds

 $\|\mathbf{z} - \widehat{\mathbf{z}}\|_{L^2} \le \text{ tol } \|\mathbf{u}\|_{L^2} \quad \text{ and } \quad \|\mathbf{q} - \widehat{\mathbf{q}}\|_{L^2} \le \text{ tol } \|\mathbf{w}\|_{L^2}. \qquad (*)$

for any given inputs \mathbf{u} and \mathbf{w} , where tol is a user specified tolerance.

If the system is stable (Re(λ(A)) < 0), controllable and observable, we can use Balanced Truncation Model Reduction (BTMR). BTMR error bound: For any given inputs u and w

$$\|\mathbf{z} - \widehat{\mathbf{z}}\|_{L^2} \le 2(\sigma_{n+1} + \ldots + \sigma_N) \|\mathbf{u}\|_{L^2},$$

$$\|\mathbf{q} - \widehat{\mathbf{q}}\|_{L^2} \le 2(\sigma_{n+1} + \ldots + \sigma_N) \|\mathbf{w}\|_{L^2},$$

where $\sigma_1 \geq \ldots \geq \sigma_n \geq \sigma_{n+1} \geq \ldots \sigma_N \geq 0$ are the Hankel singular values.

• We use BTMR in our numerics, but theoretical results only rely on error bound (*). Other model reduction approaches that have an error bound (*) can be used as well. We state results with tol $= 2(\sigma_{n+1} + \ldots + \sigma_N)$.

Back to Gradient Error Estimates

For the original problem

$$\begin{split} \mathbf{M}\mathbf{y}'(t) &= \mathbf{A}\mathbf{y}(t) + \mathbf{B}\mathbf{u}(t), & t \in (0,T), \quad \mathbf{y}(0) = \mathbf{y}_0, \\ \mathbf{z}(t) &= \mathbf{C}\mathbf{y}(t) + \mathbf{D}\mathbf{u}(t) - \mathbf{d}(t), & t \in (0,T) \\ -\mathbf{M}\boldsymbol{\lambda}'(t) &= \mathbf{A}^T\boldsymbol{\lambda}(t) + \mathbf{C}^T\mathbf{z}(t), & t \in (0,T), \quad \boldsymbol{\lambda}(T) = 0, \\ \nabla J(\mathbf{u}) &= \mathbf{q}(t) = \mathbf{B}^T\boldsymbol{\lambda}(t) + \mathbf{D}^T\mathbf{z}(t), & t \in (0,T) \end{split}$$

For the reduced problem

$$\begin{aligned} \widehat{\mathbf{y}}'(t) &= \widehat{\mathbf{A}} \widehat{\mathbf{y}}(t) + \widehat{\mathbf{B}} \mathbf{u}(t), & t \in (0, T) \quad \widehat{\mathbf{y}}(0) = \widehat{\mathbf{y}}_{0}, \\ \widehat{\mathbf{z}}(t) &= \widehat{\mathbf{C}} \widehat{\mathbf{y}}(t) + \mathbf{D} \mathbf{u}(t) - \mathbf{d}(t), & t \in (0, T) \\ -\widehat{\mathbf{\lambda}}'(t) &= \widehat{\mathbf{A}}^{T} \widehat{\mathbf{\lambda}}(t) + \widehat{\mathbf{C}}^{T} \widehat{\mathbf{z}}(t), & t \in (0, T) \quad \widehat{\mathbf{\lambda}}(T) = 0, \\ \nabla \widehat{J}(\mathbf{u}) &= \widehat{\mathbf{q}}(t) = \widehat{\mathbf{B}}^{T} \widehat{\mathbf{\lambda}}(t) + \mathbf{D}^{T} \widehat{\mathbf{z}}(t), & t \in (0, T) \end{aligned}$$

- ▶ We can *almost* apply BTMR error bounds, but need same inputs w in full and reduced order adjoint system.
- Easy to fix: Introduce auxiliary adjoint λ as solution of the original adjoint, but with input z instead of z.

Error Estimate

• Assume that there exists $\alpha > 0$ such that

$$\mathbf{v}^T \mathbf{A} \mathbf{v} \le -\alpha \mathbf{v}^T \mathbf{M} \mathbf{v}, \qquad \forall \mathbf{v} \in \mathbb{R}^N.$$

For any $\mathbf{u} \in L^2$ let $\widehat{\mathbf{y}}(\mathbf{u})$ be the corresponding reduced state and $\widehat{\mathbf{z}}(\mathbf{u}) = \widehat{\mathbf{C}}\widehat{\mathbf{y}}(\mathbf{u}) + \mathbf{D}\mathbf{u} - \mathbf{d}.$

• There exists c > 0 such that the error in the gradients obeys

$$\|\nabla J(\mathbf{u}) - \nabla \widehat{J}(\mathbf{u})\|_{L^2} \le 2 \left(c \|\mathbf{u}\|_{L^2} + \|\widehat{\mathbf{z}}(\mathbf{u})\|_{L^2} \right) \left(\sigma_{n+1} + \ldots + \sigma_N \right)$$
for all $\mathbf{u} \in L^2$!

Consequently, the error between the solutions satisfies

$$\|\mathbf{u}_* - \widehat{\mathbf{u}}_*\|_{L^2} \leq \frac{2}{\kappa} \left(c \|\widehat{\mathbf{u}}_*\|_{L^2} + \|\widehat{\mathbf{z}}_*\|_{L^2} \right) (\sigma_{n+1} + \ldots + \sigma_N).$$

Example Problem (modeled after Dede/Quarteroni 2005)

$$\text{Minimize } \frac{1}{2} \int_0^T \int_D (y(x,t) - d(x,t))^2 dx \, dt + \frac{10^{-4}}{2} \int_0^T \int_{U_1 \cup U_2} u^2(x,t) dx \, dt,$$

subject to

$$\begin{split} &\frac{\partial}{\partial t}y(x,t) - \nabla(k\nabla y(x,t)) + \mathbf{V}(x) \cdot \nabla y(x,t) \\ &= u(x,t)\chi_{U_1}(x) + u(x,t)\chi_{U_2}(x) \qquad \text{in } \Omega \times (0,4), \end{split}$$

with boundary conditions y(x,t) = 0 on $\Gamma_D \times (0,4)$, $\frac{\partial}{\partial n} y(x,t) = 0$ on $\Gamma_N \times (0,4)$ and initial conditions y(x,0) = 0 in Ω .

 Ω with boundary conditions for the advection diffusion equation

grid	m	k	N	n
1	168	9	1545	9
2	283	16	2673	9
3	618	29	6036	9

The number m of observations, the number k of controls, the size N of the full order system, and the size n of the reduced order system for three discretizations.

The largest Hankel singular values and the threshold $10^{-4}\sigma_1$ (fine grid)

Integrals $\int_{U_1} u_*^2(x,t) dx$ (solid blue line) and $\int_{U_1} \widehat{u}_*^2(x,t) dx$ (dashed red line) of the optimal controls computed using the full and and the reduced order model.

Integrals $\int_{U_2} u_*^2(x,t) dx$ (solid blue line) and $\int_{U_2} \widehat{u}_*^2(x,t) dx$ (dashed red line) of the optimal controls computed using the full and and the reduced order model.

The full and reduced order model solutions are in excellent agreement: $\|u_* - \hat{u}_*\|_{L^2}^2 = 6.2 \cdot 10^{-3}.$

The convergence histories of the Conjugate Gradient algorithm applied to the full (+) and the reduced (o) order optimal control problems.

Recall error bound for the gradients:

$$\|\nabla J(\mathbf{u}) - \nabla \widehat{J}(\mathbf{u})\|_{L^2} \le 2\left(c\|\mathbf{u}\|_{L^2} + \|\widehat{\mathbf{z}}(\mathbf{u})\|_{L^2}\right)\left(\sigma_{n+1} + \ldots + \sigma_N\right)$$
for all $\mathbf{u} \in L^2$!

Outline

Model Reduction and Optimal Control of Linear-Quadratic Problems

Model Reduction and Optimization of Problems with Localized Nonlinearities

Regularity of Stokes Equation with Slip Boundary Conditions on Sobolev Domains

16 / 52

Shape Optimization Problem

Consider the minimization problem

$$\min_{\theta \in \Theta_{ad}} J(\theta) := \int_0^T \int_{\Omega(\theta)} \ell(y(x,t;\theta),t,\theta) dx \ dt$$

where $y(\boldsymbol{x},t;\boldsymbol{\theta})$ solves

$$\begin{split} \frac{\partial}{\partial t}y(x,t) &- \nabla(k(x)\nabla y(x,t)) \\ &+ V(x) \cdot \nabla y(x,t)) = f(x,t) \qquad (x,t) \in \Omega(\theta) \times (0,T), \\ &k(x)\nabla y(x,t) \cdot n = g(x,t) \qquad (x,t) \in \Gamma_N(\theta) \times (0,T), \\ &y(x,t) = u(x,t) \qquad (x,t) \in \Gamma_D(\theta) \times (0,T), \\ &y(x,0) = y_0(x) \qquad x \in \Omega_D(\theta) \end{split}$$

Semidiscretization in space leads to

$$\min_{\boldsymbol{\theta}\in \Theta_{ad}} J(\boldsymbol{\theta}) := \int_0^T \ell(\mathbf{y}(t;\boldsymbol{\theta}),t,\boldsymbol{\theta}) \ dt$$

where $\mathbf{y}(t;\boldsymbol{\theta})$ solves

$$\begin{split} \mathbf{M}(\theta) \frac{d}{dt} \mathbf{y}(t) + \mathbf{A}(\theta) \mathbf{y}(t) &= \mathbf{B}(\theta) \mathbf{u}(t), \quad t \in [0, T], \\ \mathbf{M}(\theta) \mathbf{y}(0) &= \mathbf{M}(\theta) \mathbf{y}_0. \end{split}$$

We would like to replace the large scale problem

$$\min_{\theta \in \Theta_{ad}} J(\theta) := \int_0^T \ell(\mathbf{y}(t;\theta), t, \theta) \ dt$$

where $\mathbf{y}(t; \theta)$ solves

$$\mathbf{M}(\theta)\frac{d}{dt}\mathbf{y}(t) + \mathbf{A}(\theta)\mathbf{y}(t) = \mathbf{B}(\theta)\mathbf{u}(t), \quad t \in [0, T],$$
$$\mathbf{M}(\theta)\mathbf{y}(0) = \mathbf{M}(\theta)\mathbf{y}_0$$

by a reduced order problem

$$\min_{\boldsymbol{\theta}\in \Theta_{ad}} \widehat{J}(\boldsymbol{\theta}) := \int_0^T \ell(\widehat{\mathbf{y}}(t;\boldsymbol{\theta}),t,\boldsymbol{\theta}) \ dt$$

where $\widehat{\mathbf{y}}(t; \theta)$ solves

$$\widehat{\mathbf{M}(\theta)} \frac{d}{dt} \widehat{\mathbf{y}}(t) + \widehat{\mathbf{A}(\theta)} \mathbf{y}(t) = \widehat{\mathbf{B}(\theta)} \mathbf{u}(t), \quad t \in [0, T],$$
$$\widehat{\mathbf{M}(\theta)} \widehat{\mathbf{y}}(0) = \widehat{\mathbf{M}(\theta)} \widehat{\mathbf{y}}_0.$$

▶ Problem is that we need a reduced order model that approximates the full GEORG order model for all $\theta \in \Theta_{ad}!$

Consider Problems with Local Nonlinearity

• Consider classes of problems where the shape parameter θ only influences a (small) subdomain:

 $\bar{\Omega}(\theta) := \bar{\Omega}_1 \cup \bar{\Omega}_2(\theta), \quad \Omega_1 \cap \Omega_2(\theta) = \emptyset, \quad \Gamma = \bar{\Omega}_1 \cap \bar{\Omega}_2(\theta).$

$$\Omega_1$$
 $\Omega_2(\theta)$ Ω_1

Г

The FE stiffness matrix times vector can be decomposed into

$$\mathbf{A}\mathbf{y} = \begin{pmatrix} \mathbf{A}_1^{II} & \mathbf{A}_1^{I\Gamma} & \mathbf{0} \\ \mathbf{A}_1^{\Gamma I} & \mathbf{A}^{\Gamma \Gamma}(\theta) & \mathbf{A}_2^{\Gamma I}(\theta) \\ \mathbf{0} & \mathbf{A}_2^{I\Gamma}(\theta) & \mathbf{A}_2^{II}(\theta) \end{pmatrix} \begin{pmatrix} \mathbf{y}_1^{I} \\ \mathbf{y}_1^{\Gamma} \\ \mathbf{y}_2^{I} \end{pmatrix}$$

where $\mathbf{A}^{\Gamma\Gamma}(\theta) = \mathbf{A}_1^{\Gamma\Gamma} + \mathbf{A}_2^{\Gamma\Gamma}(\theta)$.

The matrices \mathbf{M} , \mathbf{B} admit similar representations.

Consider objective functions of the type

$$\int_0^T \ell(\mathbf{y}(t), t, \theta) dt = \frac{1}{2} \int_0^T \|\mathbf{C}_1^I \mathbf{y}_1^I - \mathbf{d}_1^I(t)\|_2^2 + \widetilde{\ell}(\mathbf{y}^\Gamma(t), \mathbf{y}_2^I(t), t, \theta) dt. \underbrace{\mathsf{Mason}}_{\mathsf{valuestry}} \mathbf{M} \mathbf{x}_1 \mathbf{y}_1^I - \mathbf{d}_1^I(t)\|_2^2 + \widetilde{\ell}(\mathbf{y}^\Gamma(t), \mathbf{y}_2^I(t), t, \theta) dt. \underbrace{\mathsf{Mason}}_{\mathsf{valuestry}} \mathbf{x}_1^I \mathbf{y}_1^I - \mathbf{d}_1^I(t)\|_2^2 + \widetilde{\ell}(\mathbf{y}^\Gamma(t), \mathbf{y}_2^I(t), t, \theta) dt. \underbrace{\mathsf{Mason}}_{\mathsf{valuestry}} \mathbf{y}_1^I \mathbf{y}_1^I - \mathbf{d}_1^I(t)\|_2^2 + \widetilde{\ell}(\mathbf{y}^\Gamma(t), \mathbf{y}_2^I(t), t, \theta) dt. \underbrace{\mathsf{Mason}}_{\mathsf{valuestry}} \mathbf{y}_1^I \mathbf{y}_1^I - \mathbf{d}_1^I(t)\|_2^2 + \widetilde{\ell}(\mathbf{y}^\Gamma(t), \mathbf{y}_2^I(t), t, \theta) dt. \underbrace{\mathsf{Mason}}_{\mathsf{valuestry}} \mathbf{y}_1^I \mathbf{y}_1^I - \mathbf{d}_1^I(t)\|_2^2 + \widetilde{\ell}(\mathbf{y}^\Gamma(t), \mathbf{y}_2^I(t), t, \theta) dt. \underbrace{\mathsf{Mason}}_{\mathsf{valuestry}} \mathbf{y}_1^I \mathbf{y}_1^I - \mathbf{d}_1^I(t)\|_2^2 + \widetilde{\ell}(\mathbf{y}^\Gamma(t), \mathbf{y}_2^I(t), t, \theta) dt. \underbrace{\mathsf{Mason}}_{\mathsf{valuestry}} \mathbf{y}_1^I \mathbf{y}_1^I - \mathbf{d}_1^I(t)\|_2^2 + \widetilde{\ell}(\mathbf{y}^\Gamma(t), \mathbf{y}_2^I(t), t, \theta) dt. \underbrace{\mathsf{Mason}}_{\mathsf{valuestry}} \mathbf{y}_1^I \mathbf{y}_1^I \mathbf{y}_1^I - \mathbf{d}_1^I(t)\|_2^2 + \widetilde{\ell}(\mathbf{y}^\Gamma(t), \mathbf{y}_2^I(t), t, \theta) dt. \underbrace{\mathsf{Mason}}_{\mathsf{valuestry}} \mathbf{y}_1^I \mathbf{y}_1^I$$

Our Optimization problem

$$\min_{\boldsymbol{\theta}\in\Theta_{ad}}J(\boldsymbol{\theta}) := \int_0^T \ell(\mathbf{y}(t;\boldsymbol{\theta}),t,\boldsymbol{\theta}) \ dt$$

where $\mathbf{y}(t; \theta)$ solves

$$\mathbf{M}(\theta)\frac{d}{dt}\mathbf{y}(t) + \mathbf{A}(\theta)\mathbf{y}(t) = \mathbf{B}(\theta)\mathbf{u}(t), \quad t \in [0, T],$$
$$\mathbf{M}(\theta)\mathbf{y}(0) = \mathbf{M}(\theta)\mathbf{y}_0$$

can now be written as

$$\min_{\theta \in \Theta_{ad}} J(\theta) \coloneqq \frac{1}{2} \int_0^T \|\mathbf{C}_1^I \mathbf{y}_1^I - \mathbf{d}_1^I(t)\|_2^2 + \widetilde{\ell}(\mathbf{y}^{\Gamma}(t), \mathbf{y}_2^I(t), t, \theta) dt$$

where $\mathbf{y}(t; \theta)$ solves

$$\begin{split} \mathbf{M}_{1}^{II} \frac{d}{dt} \mathbf{y}_{1}^{I}(t) + \mathbf{M}_{1}^{I\Gamma} \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{A}_{1}^{II} \mathbf{y}_{1}^{I}(t) + \mathbf{A}_{1}^{I\Gamma} \mathbf{y}^{\Gamma}(t) &= \mathbf{B}_{1}^{I} \mathbf{u}_{1}^{I}(t) \\ \mathbf{M}_{2}^{II}(\theta) \frac{d}{dt} \mathbf{y}_{2}^{I}(t) + \mathbf{M}_{2}^{I\Gamma}(\theta) \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{A}_{2}^{II}(\theta) \mathbf{y}_{2}^{I}(t) + \mathbf{A}_{2}^{I\Gamma}(\theta) \mathbf{y}^{\Gamma}(t) &= \mathbf{B}_{2}^{I}(\theta) \mathbf{u}_{2}^{I}(t) \\ \mathbf{M}_{1}^{\Gamma I} \frac{d}{dt} \mathbf{y}_{1}^{I}(t) + \mathbf{M}^{\Gamma\Gamma}(\theta) \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{M}_{2}^{\Gamma I}(\theta) \frac{d}{dt} \mathbf{y}_{2}^{I}(t) \\ &+ \mathbf{A}_{1}^{\Gamma I} \mathbf{y}_{1}^{I}(t) + \mathbf{A}^{\Gamma\Gamma}(\theta) \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{A}_{2}^{\Gamma I}(\theta) \mathbf{y}_{2}^{I}(t) &= \mathbf{B}^{\Gamma}(\theta) \mathbf{u}_{1}^{\Gamma}(t) \\ \end{split}$$
Dependence on $\theta \in \Theta_{ad}$ is now localized. The fixed subsystem 1 is large. Theorem

Dependence on $\theta \in \Theta_{ad}$ is now localized. The fixed subsystem 1 is large. The variable subsystem 2 is small. Idea: Reduce subsystem 1 only.

First Order Optimality Conditions

The first order necessary optimality conditions are

$$\begin{split} \mathbf{M}(\theta) \frac{d}{dt} \mathbf{y}(t) + \mathbf{A}(\theta) \mathbf{y}(t) &= \mathbf{B}(\theta) \mathbf{u}(t) \quad t \in [0, T], \\ \mathbf{M}(\theta) \mathbf{y}(0) &= \mathbf{y}_0, \\ -\mathbf{M}(\theta) \frac{d}{dt} \boldsymbol{\lambda}(t) + \mathbf{A}^T(\theta) \boldsymbol{\lambda}(t) &= -\nabla_{\mathbf{y}} \ell(\mathbf{y}, t, \theta) \quad t \in [0, T], \\ \mathbf{M}(\theta) \boldsymbol{\lambda}(T) &= 0. \\ \nabla_{\theta} L(\mathbf{y}(t), \boldsymbol{\lambda}(t), \theta) (\tilde{\theta} - \theta) \geq 0, \quad \tilde{\theta} \in \Theta_{ad} \end{split}$$

• Gradient of J is given by $\nabla J(\theta) = \nabla_{\theta} \ell(\mathbf{y}(t), \boldsymbol{\lambda}(t), \theta).$

Using the DD structure, the state and adjoint equations can be written as

$$\begin{split} \mathbf{M}_{1}^{II} \frac{d}{dt} \mathbf{y}_{1}^{I}(t) + \mathbf{M}_{1}^{I\Gamma} \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{A}_{1}^{II} \mathbf{y}_{1}^{I}(t) + \mathbf{A}_{1}^{I\Gamma} \mathbf{y}^{\Gamma}(t) &= \mathbf{B}_{1}^{I} \mathbf{u}_{1}^{I}(t) \\ \mathbf{M}_{2}^{II}(\theta) \frac{d}{dt} \mathbf{y}_{2}^{I}(t) + \mathbf{M}_{2}^{I\Gamma}(\theta) \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{A}_{2}^{II}(\theta) \mathbf{y}_{2}^{I}(t) + \mathbf{A}_{2}^{I\Gamma}(\theta) \mathbf{y}^{\Gamma}(t) &= \mathbf{B}_{2}^{I}(\theta) \mathbf{u}_{2}^{I}(t) \\ \mathbf{M}_{1}^{\Gamma I} \frac{d}{dt} \mathbf{y}_{1}^{I}(t) + \mathbf{M}^{\Gamma\Gamma}(\theta) \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{M}_{2}^{\Gamma I}(\theta) \frac{d}{dt} \mathbf{y}_{2}^{I}(t) \\ &+ \mathbf{A}_{1}^{\Gamma I} \mathbf{y}_{1}^{I}(t) + \mathbf{A}^{\Gamma\Gamma}(\theta) \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{A}_{2}^{\Gamma I}(\theta) \mathbf{y}_{2}^{I}(t) &= \mathbf{B}^{\Gamma}(\theta) \mathbf{u}^{\Gamma}(t) \end{split}$$

Using the DD structure, the state and adjoint equations can be written as

$$\begin{split} \mathbf{M}_{1}^{II} \frac{d}{dt} \mathbf{y}_{1}^{I}(t) + \mathbf{M}_{1}^{I\Gamma} \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{A}_{1}^{II} \mathbf{y}_{1}^{I}(t) + \mathbf{A}_{1}^{I\Gamma} \mathbf{y}^{\Gamma}(t) &= \mathbf{B}_{1}^{I} \mathbf{u}_{1}^{I}(t) \\ \mathbf{M}_{2}^{II}(\theta) \frac{d}{dt} \mathbf{y}_{2}^{I}(t) + \mathbf{M}_{2}^{I\Gamma}(\theta) \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{A}_{2}^{II}(\theta) \mathbf{y}_{2}^{I}(t) + \mathbf{A}_{2}^{I\Gamma}(\theta) \mathbf{y}^{\Gamma}(t) &= \mathbf{B}_{2}^{I}(\theta) \mathbf{u}_{2}^{I}(t) \\ \mathbf{M}_{1}^{\Gamma I} \frac{d}{dt} \mathbf{y}_{1}^{I}(t) + \mathbf{M}^{\Gamma\Gamma}(\theta) \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{M}_{2}^{\Gamma I}(\theta) \frac{d}{dt} \mathbf{y}_{2}^{I}(t) \\ &+ \mathbf{A}_{1}^{\Gamma I} \mathbf{y}_{1}^{I}(t) + \mathbf{A}^{\Gamma\Gamma}(\theta) \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{A}_{2}^{\Gamma I}(\theta) \mathbf{y}_{2}^{I}(t) &= \mathbf{B}^{\Gamma}(\theta) \mathbf{u}^{\Gamma}(t), \end{split}$$

$$\begin{split} -\mathbf{M}_{1}^{II} \frac{d}{dt} \boldsymbol{\lambda}_{1}^{I}(t) - \mathbf{M}_{1}^{I\Gamma} \frac{d}{dt} \boldsymbol{\lambda}^{\Gamma}(t) + \mathbf{A}_{1}^{II} \boldsymbol{\lambda}_{1}^{I}(t) + \mathbf{A}_{1}^{I\Gamma} \boldsymbol{\lambda}^{\Gamma}(t) &= -(\mathbf{C}_{1}^{I})^{T} (\mathbf{C}_{1}^{I} \mathbf{y}_{1}^{I}(t) - \mathbf{d}_{1}^{I}) \\ -\mathbf{M}_{2}^{II}(\theta) \frac{d}{dt} \boldsymbol{\lambda}_{2}^{I}(t) - \mathbf{M}_{2}^{I\Gamma}(\theta) \frac{d}{dt} \boldsymbol{\lambda}^{\Gamma}(t) + \mathbf{A}_{2}^{II}(\theta) \boldsymbol{\lambda}_{2}^{I}(t) + \mathbf{A}_{2}^{I\Gamma}(\theta) \boldsymbol{\lambda}^{\Gamma}(t) &= -\nabla_{\mathbf{y}_{2}^{I}} \tilde{\ell}(.) \\ &- \mathbf{M}_{1}^{\Gamma I} \frac{d}{dt} \boldsymbol{\lambda}_{1}^{I}(t) - \mathbf{M}^{\Gamma\Gamma}(\theta) \frac{d}{dt} \boldsymbol{\lambda}^{\Gamma}(t) - \mathbf{M}_{2}^{\Gamma I}(\theta) \frac{d}{dt} \boldsymbol{\lambda}_{2}^{I}(t) \\ &+ \mathbf{A}_{1}^{\Gamma I} \boldsymbol{\lambda}_{1}^{I}(t) + \mathbf{A}^{\Gamma\Gamma}(\theta) \frac{d}{dt} \boldsymbol{\lambda}^{\Gamma}(t) + \mathbf{A}_{2}^{\Gamma I}(\theta) \boldsymbol{\lambda}_{2}^{I}(t) &= -\nabla_{\mathbf{y}^{\Gamma}} \tilde{\ell}(.), \end{split}$$

To apply model reduction to the system corresponding to fixed subdomain Ω_1 , we have to identify how $\mathbf{y}_1^{\mathrm{I}}$ and $\boldsymbol{\lambda}_1^{\mathrm{I}}$ interact with other components.

Model Reduction of Fixed Subdomain Problem

We need to reduce

$$\begin{split} \mathbf{M}_{1}^{II} \frac{d}{dt} \mathbf{y}_{1}^{I}(t) &= -\mathbf{A}_{1}^{II} \mathbf{y}_{1}^{I}(t) - \mathbf{M}_{1}^{I\Gamma} \frac{d}{dt} \mathbf{y}^{\Gamma}(t) + \mathbf{B}_{1}^{I} \mathbf{u}_{1}^{I}(t) - \mathbf{A}_{1}^{I\Gamma} \mathbf{y}^{\Gamma}(t) \\ \mathbf{z}_{1}^{I} &= \mathbf{C}_{1}^{I} \mathbf{y}_{1}^{I}(t) - \mathbf{d}_{1}^{I} \\ \mathbf{z}_{1}^{\Gamma} &= -\mathbf{M}_{1}^{\Gamma I} \frac{d}{dt} \mathbf{y}_{1}^{I} - \mathbf{A}_{1}^{\Gamma I} \mathbf{y}_{1}^{I}, \\ -\mathbf{M}_{1}^{II} \frac{d}{dt} \boldsymbol{\lambda}_{1}^{I}(t) &= -\mathbf{A}_{1}^{II} \boldsymbol{\lambda}_{1}^{I}(t) + \mathbf{M}_{1}^{I\Gamma} \frac{d}{dt} \boldsymbol{\lambda}^{\Gamma}(t) - (\mathbf{C}_{1}^{I})^{T} \mathbf{z}_{1}^{I} - \mathbf{A}_{1}^{I\Gamma} \boldsymbol{\lambda}^{\Gamma}(t) \\ \mathbf{q}_{1}^{I} &= (\mathbf{B}_{1}^{I})^{T} \boldsymbol{\lambda}_{1}^{I} \\ \mathbf{q}_{1}^{\Gamma} &= \mathbf{M}_{1}^{\Gamma I} \frac{d}{dt} \boldsymbol{\lambda}_{1}^{I} - \mathbf{A}_{1}^{\Gamma I} \boldsymbol{\lambda}_{1}^{I} \end{split}$$

For simplicity we assume that

$$\mathbf{M}_1^{I\Gamma} = 0 \quad \mathbf{M}_1^{\Gamma I} = 0,$$

We get

$$\begin{split} \mathbf{M}_{1}^{II} \frac{d}{dt} \mathbf{y}_{1}^{I}(t) &= -\mathbf{A}_{1}^{II} \mathbf{y}_{1}^{I}(t) + (\mathbf{B}_{1}^{I} \mid -\mathbf{A}_{1}^{I\Gamma}) \begin{pmatrix} \mathbf{u}_{1}^{I} \\ \mathbf{y}^{\Gamma} \end{pmatrix}, \\ & \begin{pmatrix} \mathbf{z}_{1}^{I} \\ \mathbf{z}_{1}^{\Gamma} \end{pmatrix} = \begin{pmatrix} -\mathbf{C}_{1}^{I} \\ -\mathbf{A}_{1}^{\Gamma I} \end{pmatrix} \mathbf{y}_{1}^{I} + \begin{pmatrix} \mathbf{I} \\ 0 \end{pmatrix} \mathbf{d}_{1}^{I}, \\ & -\mathbf{M}_{1}^{II} \frac{d}{dt} \boldsymbol{\lambda}_{1}^{I}(t) = -\mathbf{A}_{1}^{II} \boldsymbol{\lambda}_{1}^{I}(t) + (-(\mathbf{C}_{1}^{I})^{T} \mid -\mathbf{A}_{1}^{I\Gamma}) \begin{pmatrix} \mathbf{z}_{1}^{I} \\ \boldsymbol{\lambda}^{\Gamma} \end{pmatrix}, \\ & \begin{pmatrix} \mathbf{q}_{1}^{I} \\ \mathbf{q}_{1}^{\Gamma} \end{pmatrix} = \begin{pmatrix} (\mathbf{B}_{1}^{I})^{T} \\ -\mathbf{A}_{1}^{\Gamma I} \end{pmatrix} \boldsymbol{\lambda}_{1}^{I}. \end{split}$$

This system is exactly of the form needed for balanced truncation model reduction.

Reduced Optimization Problem

- We apply BTMR to the fixed subdomain problem with inputs and output determined by the original inputs to subdomain 1 as well as the interface conditions.
- In the optimality conditions replace the fixed subdomain problem by its reduced order model.
- We can interpret the resulting reduced optimality system as the optimality system of the following reduced optimization problem

$$\min \int_0^T \frac{1}{2} \|\widehat{\mathbf{C}}_1^I \widehat{\mathbf{y}}_1^I - \mathbf{d}_1^I(t)\|_2^2 + \widetilde{\ell}(\mathbf{y}^{\Gamma}(t), \mathbf{y}_2^I(t), t, \theta) dt$$

subject to

Error Estimate

lf

• there exists $\alpha > 0$ such that

$$\begin{split} \mathbf{v}^{T}\mathbf{A}\mathbf{v} &\leq -\alpha\mathbf{v}^{T}\mathbf{M}\mathbf{v}, \qquad \forall \mathbf{v} \in \mathbb{R}^{N}, \\ \blacktriangleright \text{ the gradients } \nabla_{\mathbf{y}_{I}^{(2)}}\widetilde{\ell}(\mathbf{y}_{I}^{(2)},\mathbf{y}_{\Gamma},t,\theta), \ \nabla_{\mathbf{y}_{\Gamma}}\widetilde{\ell}(\mathbf{y}_{I}^{(2)},\mathbf{y}_{\Gamma},t,\theta), \\ \nabla_{\theta}\widetilde{\ell}(\mathbf{y}_{I}^{(2)},\mathbf{y}_{\Gamma},t,\theta), \text{ are Lipschitz continuous in } \mathbf{y}_{I}^{(2)},\mathbf{y}_{\Gamma} \\ \vdash \text{ for all } \|\widetilde{\theta}\| \leq 1 \text{ and all } \theta \in \Theta \text{ the following bound holds} \\ \max\left\{\|D_{\theta}\mathbf{M}^{(2)}(\theta)\widetilde{\theta}\|, \|D_{\theta}\mathbf{A}^{(2)}(\theta)\widetilde{\theta}\|, \|D_{\theta}\mathbf{B}^{(2)}(\theta)\widetilde{\theta}\|\right\} \leq \gamma, \end{split}$$

then there exists c>0 dependent on $\mathbf{u}, \, \widehat{\mathbf{y}}$, and $\widehat{\boldsymbol{\lambda}}$ such that

$$\|\nabla J(\theta) - \nabla \widehat{J}(\theta)\|_{L^2} \le \frac{c}{\alpha}(\sigma_{n+1} + \dots + \sigma_N).$$

If we assume the convexity condition

$$(\nabla J(\widehat{\theta}_*) - \nabla J(\theta_*))^T (\widehat{\theta}_* - \theta_*) \ge \kappa \|\widehat{\theta}_* - \theta_*\|^2,$$

then we obtain the error bound

$$\|\theta_* - \widehat{\theta}_*\| \leq \frac{c}{\alpha\kappa}(\sigma_{n+1} + \dots + \sigma_N).$$

Example 1: Shape Optim. Governed by Parabolic Eqn.

Optimization problem

$$\min \int_{0}^{T} \int_{\Gamma_L \cup \Gamma_R} |y - y^d|^2 ds dt + \int_{0}^{T} \int_{\Omega_2(\theta)} |y - y^d|^2 dx dt$$

subject to the differential equation

$$\begin{split} y_t(x,t) &- \Delta y(x,t) + y(x,t) = 100 & \text{ in } \Omega(\theta) \times (0,T), \\ n \cdot \nabla y(x,t) &= 0 & \text{ on } \partial \Omega(\theta) \times (0,T), \\ y(x,0) &= 0 & \text{ in } \Omega(\theta) \end{split}$$

and design parameter constraints $\theta^{min} \leq \theta \leq \theta^{max}.$

We use k_T = 3, k_B = 3 Bézier control points to specify the top and the bottom boundary of the variable subdomain Ω₂(θ).
 The desired temperature y^d is computed by specifying the optimal parameter θ_{*} and solving the state equation on Ω(θ_{*}).

- We use automatic differentiation to compute the derivatives with respect to the design variables θ.
- ► The semi-discretized optimization problems are solved using a projected BFGS method with Armijo line search. The optimization algorithm is terminated when the norm of projected gradient is less than ε = 10⁻⁴.
- The optimal domain

	$N_{dof}^{(1)}$	N_{dof}
Reduced	147	581
Full	4280	4714

Sizes of the full and the reduced order problems

and the threshold $10^{-4}\sigma_1$

Error in solutions:
$$\|\theta^* - \hat{\theta}^*\|_2 = 2.3 \cdot 10^{-4}$$

Optimal shape parameters θ_* and $\hat{\theta}_*$ (rounded to 5 digits) computed by minimizing the full and the reduced order model.

$ heta_*$	(1.00, 2.0000, 2.0000, -2.0000, -2.0000, -1.00)
$\widehat{ heta}_*$	(1.00, 1.9999, 2.0001, -2.0001, -1.9998, -1.00)

The convergence histories of the projected BFGS algorithm applied to the full and the reduced order problems.

convergence history of the objective functionals for the full (+) and reduced (\circ) order model.

convergence history of the projected gradients for the full (+) and reduced (\circ) order model.

Example 2: Shape Optim. Governed by Stokes Eqns.

where $\mathbf{v}(\theta), p(\theta)$ solve the Stokes equations

$$\begin{split} \frac{\partial}{\partial t} \mathbf{v}(x,t) &- \nu \Delta \mathbf{v}(x,t) + \nabla p(x,t) = \mathbf{f}(x,t) & \text{in } \Omega(\theta) \times (0,T] ,\\ & \text{div } \mathbf{v}(x,t) = 0 & \text{in } \Omega(\theta) \times (0,T] ,\\ & (\nu \nabla \mathbf{v}(x,t) + p(x,t)) = 0 & \text{on } \Gamma_{out}(\theta) \times (0,T] ,\\ & \mathbf{v}(x,t) = \mathbf{u}(x,t) & \text{on } (\Gamma_D(\theta) \cup \Gamma_{in}) \times (0,T] ,\\ & \mathbf{v}(x,0) = \mathbf{v}_0(x) & \text{in } \Omega(\theta). \end{split}$$

- We apply the same approach
 - Assume that only a small part of the domain depends on the shape parameter θ.
 - Use DD to isolate the quantities that depend on θ .
 - Use BMTR to reduced the subdomain problem that corresponds to the fixed domain.

- We apply the same approach
 - Assume that only a small part of the domain depends on the shape parameter θ .
 - Use DD to isolate the quantities that depend on θ .
 - Use BMTR to reduced the subdomain problem that corresponds to the fixed domain.
- But (discretized) Stokes eqns. lead to a DAE (Hessenberg index 2), which makes approach and analysis more complicated.
 - Standard BTMR cannot be used. Extension for Stokes type systems exist (Stykel 2006, Heinkenschloss/Sorensen/Sun 2008).
 - Spatial domain decomposition for the Stokes system requires care to ensure well-posedness of the coupled problem as well as of the subdomain problems. See, e.g., Toselli/Widlund book for approaches.
 - We use discretization with discontinuous pressures along the subdomain interface. Subdomain pressures are represented as a constant plus a pressure with zero spatial average.
 - Error analysis for the shape optimization exists for the case when the objective function corresponding to the fixed subdomain does not explicitly depend on pressure (A.,Heinkenschloss,Hoppe 2011).

Domain Decomposition: Discontinuous Pressure Γ

- On each subdomain, the pressure is written as the sum of a constant pressure plus a pressure with zero spatial average. p^I_j is the pressure in Ω_j with average 0; p₀ the vector constant pressures. There is no pressure associated with the interface.
- > The Stokes matrix times vector multiplication can be decomposed into

$$\mathbf{Sy} = \begin{pmatrix} \mathbf{A}_{1}^{II} & (\mathbf{B}_{1}^{II})^{T} & 0 & 0 & \mathbf{A}_{1}^{I\Gamma} & 0 \\ \mathbf{B}_{1}^{II} & 0 & 0 & 0 & \mathbf{B}_{1}^{\Gamma I} & 0 \\ \hline \mathbf{0} & 0 & \mathbf{A}_{2}^{II} & (\mathbf{B}_{2}^{II})^{T} & \mathbf{A}_{2}^{I\Gamma} & 0 \\ \hline \mathbf{0} & 0 & \mathbf{B}_{2}^{II} & 0 & \mathbf{B}_{2}^{\Gamma I} & 0 \\ \hline \mathbf{A}_{1}^{\Gamma I} & (\mathbf{B}_{1}^{\Gamma I})^{T} & \mathbf{A}_{2}^{\Gamma I} & (\mathbf{B}_{2}^{\Gamma I})^{T} & \mathbf{A}_{1}^{\Gamma \Gamma} & (\mathbf{B}_{0})^{T} \\ \hline \mathbf{0} & 0 & 0 & \mathbf{0} & \mathbf{B}_{0} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1}^{I} \\ \mathbf{p}_{1}^{I} \\ \mathbf{v}_{2}^{I} \\ \mathbf{p}_{2}^{I} \\ \mathbf{v}^{\Gamma} \\ \mathbf{p}_{0} \end{pmatrix}$$

 Zeros 0 in last row and column block are important to derive error bound for the coupled reduced problem (A.,Heinkenschloss,Hoppe 2011).

Example

Geometry motivated by biochip

$$\min_{\theta^{\min} \le \theta \le \theta^{\max}} J(\theta) = \int_{0}^{T} \int_{\Omega_{obs}} \frac{1}{2} |\nabla \times \mathbf{v}(x,t;\theta)|^2 dx + \int_{\Omega_2(\theta)} \frac{1}{2} |\mathbf{v}(x,t;\theta) - \mathbf{v}^d(x,t)|^2 dx dt$$

where $\mathbf{v}(\theta)$ and $p(\theta)$ solve the Stokes equations

$$\begin{split} \mathbf{v}_t(x,t) &- \mu \Delta \mathbf{v}(x,t) + \nabla p(x,t) = \mathbf{f}(x,t), & \text{ in } \Omega(\theta) \times (0,T), \\ \nabla \cdot \mathbf{v}(x,t) &= 0, & \text{ in } \Omega(\theta) \times (0,T), \\ \mathbf{v}(x,t) &= \mathbf{v}_{\text{in}}(x,t) & \text{ on } \Gamma_{\text{in}} \times (0,T), \\ \mathbf{v}(x,t) &= \mathbf{0} & \text{ on } \Gamma_{\text{lat}} \times (0,T), \\ -(\mu \nabla \mathbf{v}(x,t) - p(x,t)I)\mathbf{n} &= 0 & \text{ on } \Gamma_{\text{out}} \times (0,T), \\ \mathbf{v}(x,0) &= \mathbf{0} & \text{ in } \Omega(\theta). \end{split}$$

Here $\overline{\Omega(\theta)} = \overline{\Omega_1} \cup \overline{\Omega_2(\theta)}$ and $\overline{\Omega_2(\theta)}$ is the top left yellow, square domain. The observation region $\Omega_{\rm obs}$ is part of the two reservoirs. We have 12 shape parameters, $\theta \in \mathbb{R}^{12}$.

grid	m	$N_{\mathbf{v},dof}^{(1)}$	$N_{\widehat{\mathbf{v}},dof}^{(1)}$	$N_{\mathbf{v},dof}$	$N_{\widehat{\mathbf{v}},dof}$
1	149	4752	23	4862	133
2	313	7410	25	7568	183
3	361	11474	26	11700	252
4	537	16472	29	16806	363

The number m of observations in $\Omega_{\rm obs}$, the number of velocities $N^{(1)}_{{\bf v},dof}, N^{(1)}_{\widehat{{\bf v}},dof}$ in the fixed subdomain Ω_1 for the full and reduced order model, the number of velocities $N_{{\bf v},dof}, N_{\widehat{{\bf v}},dof}$ in the entire domain Ω for the full and reduced order model for five discretizations.

 Error in optimal parameter computed sing the full and the reduced order model (rounded to 5 digits)

$ heta^*$	(9.8987,	9.7510,	9.7496,	9.8994,	9.0991,	9.2499,	9.2504,	9.0989)
$\widehat{ heta}^*$	(9.9026,	9.7498,	9.7484,	9.9021,	9.0940,	9.2514,	9.2511,	9.0956)

The convergence histories of the projected BFGS algorithm applied to the full and the reduced order problems.

convergence history of the objective functionals for the full (+) and reduced (o) order model.

convergence history of the projected gradients for the full (+) and reaction duced (\circ) order model.

Outline

Model Reduction and Optimal Control of Linear-Quadratic Problems

Model Reduction and Optimization of Problems with Localized Nonlinearities

Regularity of Stokes Equation with Slip Boundary Conditions on Sobolev Domains

Extrude-Swell Problem

(Loading movie ...)

Stokes FBP

$$\begin{split} -\operatorname{div}\left(\boldsymbol{\sigma}\right) &= \boldsymbol{f}, & \operatorname{div}\left(\boldsymbol{u}\right) &= 0 & \text{ in } \Omega \\ \boldsymbol{u} &= \boldsymbol{g} & \text{ on } \Gamma_{\mathrm{inlet}} \cup \Gamma_{\mathrm{wall}} \\ \boldsymbol{\sigma}\boldsymbol{\nu} &= \boldsymbol{0} & \text{ on } \Gamma_{\mathrm{out}} \\ \boldsymbol{u} \cdot \boldsymbol{\nu} &= 0, & \boldsymbol{\sigma}\boldsymbol{\nu} &= \alpha \mathcal{H}\boldsymbol{\nu} & \text{ on } \Gamma_{\mathrm{free}}, \end{split}$$

where $\boldsymbol{\sigma} = \eta \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\top} \right) - p \boldsymbol{I}$ is the stress tensor, η is viscosity, α is surface tension.

Formulation challenge

- Try to use the necessary regularity.
- Stokes equations.
 - Oversubscribed boundary conditions.
 - Moving domain.
- The curvature equation.

How to address them?

- Analyze regularity of the free surface.
- Prove well-posedness of the Stokes with mixed B.C.
 - Domain with same regularity of free surface.
- Use non-linear solver techniques.
 - Fixed point, implicit function theorem, etc ...
 - Solve in a reference domain.

Stokes Problem Slip (with friction) Boundary Conditions

•
$$\Omega \subset \mathbb{R}^n$$
 is of class $W_s^{2-1/s}$, with $s > n$.

Start with the Stokes equations

$$-\operatorname{div}\left(\boldsymbol{\sigma}\left(\boldsymbol{u},p
ight)
ight)=\boldsymbol{f},\quad\operatorname{div}\left(\boldsymbol{u}
ight)=g\quad ext{in }\Omega,$$

and add the Navier B.C. i.e. slip with friction

$$\boldsymbol{u} \cdot \boldsymbol{\nu} = \phi, \quad \beta \boldsymbol{T} \boldsymbol{u} + \boldsymbol{T}^{\top} \boldsymbol{\sigma} \left(\boldsymbol{u}, p \right) \boldsymbol{\nu} = \boldsymbol{\psi} \quad \text{on } \partial \Omega,$$

where $T = I - \nu \otimes \nu$ is the projection operator into the tangent plane of $\partial \Omega$.

$$\boldsymbol{\sigma} = 2\eta \boldsymbol{\varepsilon}(\boldsymbol{u}) - \boldsymbol{I}p, \quad \boldsymbol{\varepsilon}(\boldsymbol{u}) = \frac{\nabla u + \nabla u^{\top}}{2}.$$

Variational Equation (pure slip)

Given \mathcal{F} , find $(\boldsymbol{u},p)\in\mathcal{E}\phi\boldsymbol{\nu}\oplus \mathring{X}_r(\Omega)$ such that

$$\mathcal{S}_{\Omega}(\boldsymbol{u},p)(\boldsymbol{v},q) = \mathcal{F}(\boldsymbol{v},q) \quad \forall (\boldsymbol{v},q) \in \mathring{X}_{r'}(\Omega)$$

and the continuity bounds

$$\left\| \left(\boldsymbol{u}, \boldsymbol{p}\right) \right\|_{X_{r}(\Omega)} \leq C_{\Omega, \eta, n, r} \left(\left\| \mathcal{F} \right\|_{X_{r'}(\Omega)} + \left\| \phi \right\|_{W_{r}^{1-1/r}(\partial \Omega)} \right)$$

where the Stokes operator in $\boldsymbol{\Omega}$ reads

$$\mathcal{S}_{\Omega}\left(oldsymbol{u},p
ight)\left(oldsymbol{v},q
ight):=\int_{\Omega}oldsymbol{arepsilon}\left(oldsymbol{u}
ight):oldsymbol{arepsilon}\left(oldsymbol{v}
ight)-p\operatorname{div}\left(oldsymbol{v}
ight)+q\operatorname{div}\left(oldsymbol{u}
ight).$$

Variational Formulation (Spaces)

$$\overset{\bullet}{X}_{r} := V_{r}(\Omega) \times L_{0}^{r}(\Omega), \ s' \leq r \leq s, \ s > n.$$
$$\overset{\bullet}{V}_{r}(\Omega) := \left\{ \boldsymbol{v} \in W_{r}^{1}(\Omega) / Z(\Omega) : \boldsymbol{v} \cdot \boldsymbol{\nu} = 0 \right\}.$$

It is necessary to identify the kernel of \mathcal{S}_Ω

Earlier result: Amrouche '11 $C^{1,1}$ domain.

Domain Decomposition

We cover the domain with finite number of balls

$$\overline{\Omega} \subset \cup_{i=1}^k B(x_i, \delta_i/2).$$

- Associate to it a smooth partition of unity $\{\varphi_i\}_{i=1}^k$.
- And smooth cut-off functions, $\{\varrho_i\}_{i=1}^k$, supp $\varrho_i \subset B(x_i, \delta_i)$, $\rho_i = 1$ on $B(x_i, \delta_i/2)$.
- Using Piola transform

$$\begin{aligned} (\hat{\boldsymbol{v}}, \hat{q}) &\mapsto \left(\hat{\boldsymbol{P}}\hat{\boldsymbol{v}}, \hat{q}\right) \circ \Psi^{-1} = (\boldsymbol{v}, q) \\ (\boldsymbol{v}, q) &\mapsto \left(\boldsymbol{P}^{-1}\boldsymbol{v}, q\right) \circ \hat{\Psi} = (\hat{\boldsymbol{v}}, \hat{q}) \\ \hat{\boldsymbol{v}} \cdot \hat{\boldsymbol{\nu}} \, \mathrm{d}\hat{s} = \boldsymbol{v} \cdot \boldsymbol{\nu} \, \mathrm{d}s. \end{aligned}$$

Space Decomposition

Restriction map

$$\mathcal{R}_{\varrho_i} : \mathring{X}_r(\Omega) \to \mathring{X}_r(\hat{\Theta}_i)$$
$$(\boldsymbol{u}, p) \mapsto \hat{\mathcal{P}}_i^{-1}\left(\varrho_i \boldsymbol{u}, \varrho_i p\right)$$

Projection map

$$\begin{aligned} \hat{\mathcal{R}}_{\varphi_i} &: \mathring{X}_r(\hat{\Theta}_i) \to \mathring{X}_r(\Omega) \\ & (\hat{\boldsymbol{v}}, \hat{q}) \mapsto \varphi_i \hat{\mathcal{P}}_i \left(\hat{\boldsymbol{v}}, \hat{q} \right) \end{aligned}$$

continuous only when Piola matrix is in $W_s^2(\Omega)$.

• Given $(\boldsymbol{u},p) \in \mathring{X}_r(\Omega)$, we have

$$(\boldsymbol{u}, p) = \sum_{i=1}^{k} \varphi_i (\boldsymbol{u}, p) = \sum_{i=1}^{k} \varphi_i (\varrho_i \boldsymbol{u}, \varrho_i p) = \sum_{i=1}^{k} \varphi_i \hat{\mathcal{P}}_i \hat{\mathcal{P}}_i^{-1} (\varrho_i \boldsymbol{u}, \varrho_i p)$$
$$= \sum_{i=1}^{k} \hat{\mathcal{R}}_{\varphi_i} \underbrace{\mathcal{R}}_{\varrho_i} (\boldsymbol{u}, p)_{\in \hat{X}_r(\hat{\Theta}_i)}.$$

which implies $\mathring{X}_r(\Omega) = \sum_{i=1}^k \hat{\mathcal{R}}_{\varphi_i} \mathring{X}_r(\hat{\Theta}_i).$

Similarly for the dual space

$$\mathring{X}_{r}(\Omega)^{*} = \sum_{i=1}^{k} \hat{\mathcal{R}}_{\varphi_{i}}^{*} \mathring{X}_{r}(\hat{\Theta}_{i})^{*}.$$

Operator Decomposition

$$\begin{split} \mathcal{S}_{\Omega}\left(\boldsymbol{u},p\right)\hat{\mathcal{R}}_{\varphi_{i}}\left(\hat{\boldsymbol{v}},\hat{q}\right) &= \left(\mathcal{S}_{\Omega_{i}}\left(\varphi_{i}\boldsymbol{u},\varphi_{i}p\right) + \mathcal{K}_{i}\left(\boldsymbol{u},p\right)\right)\hat{\mathcal{P}}_{i}\left(\hat{\boldsymbol{v}},\hat{q}\right) \\ &+ \left\langle\varepsilon\left(\varphi_{i}\boldsymbol{u}\right),\varepsilon\left(\hat{\boldsymbol{P}}_{i}\hat{\boldsymbol{v}}\right)\circ\Psi^{-1}\right\rangle_{\Omega_{\lambda}} \\ &=\underbrace{\tilde{\mathcal{S}}_{i}}_{\text{Invertible}} \mathcal{R}_{\varphi_{i}}\left(\boldsymbol{u},p\right)\left(\hat{\boldsymbol{v}},\hat{q}\right) \\ &+\underbrace{\mathcal{C}_{\varphi_{i}}\mathcal{R}_{\varphi_{i}}\left(\boldsymbol{u}\right) + \mathcal{K}_{i}\left(\boldsymbol{u},p\right)\hat{\mathcal{P}}_{i}\left(\hat{\boldsymbol{v}},\hat{q}\right)}_{\text{Compact}} \end{split}$$

Pesudo-inverse

Consider the operator

$$\mathcal{S}_{\Omega}^{\dagger} := \sum_{i=1}^{k} \hat{\mathcal{R}}_{\varrho_{i}} \tilde{\mathcal{S}}_{i}^{-1} \hat{\mathcal{R}}_{\varphi_{i}}^{*}.$$

Then

$$\mathcal{S}_{\Omega}^{\dagger}\mathcal{S}_{\Omega} = \mathcal{I}_{X_{r}(\Omega)} + \sum_{i=1}^{k} \underbrace{\hat{\mathcal{R}}_{\varrho_{i}} \tilde{\mathcal{S}}_{i}^{-1} \left(\mathcal{C}_{i} \mathcal{R}_{\varphi_{i}} + \hat{\mathcal{P}}_{i}^{*} \mathcal{K}_{i} \right)}_{\text{compact}}.$$

Similarly

$$\mathcal{S}_{\Omega}\mathcal{S}_{\Omega}^{\dagger} = \mathsf{identity} + \mathsf{compact}.$$

Therefore \mathcal{S}_{Ω} has a pseudo-inverse, which implies

$$\dim N_{\mathcal{S}_\Omega} < \infty, \quad \text{codim } R_{\mathcal{S}_\Omega} < \infty.$$

\mathcal{S}_{Ω} and \mathcal{S}_{Ω}^{*} are Injective

Problem satisfies the Brezzi's theorem for Hilbert space case. This ensures the uniqueness of solution for

 $2\leq r\leq s.$

Let r₀ = s' < 2. Consider the homogeneous problem, we need to show that (u, p) = 0.

Use the method by Galdi-Simader-Sohr '99 to improve the integrability of the function to some $r_k > 2$, to conclude.

Index Theory of Fredholm Operators

Let $\mathcal{A}: X \to Y$ has a pseudo-inverse. \mathcal{A} is bijective if and only if \mathcal{A} and \mathcal{A}^* are injective.

Summary:

- Using index theory we have shown the well-posedness of the Stokes problem with slip boundary condition.
 - under mild domain regularity i.e. $C^{1,\epsilon},$ earlier result Amrouche '11 $C^{1,1}$ domain.
- We have provided a constructive approach based on domain decomposition.
- Extension to slip-with-friction is a direct corollary.

"dimension independent"

Conclusions

- Applied reduced order models in optimization context.
- Important to approximate state and adjoint equations.
- We have integrated domain decomposition and model reduction for systems with small localized nonlinearities. In our case, nonlinearities arise from dependence on shape parameters.
 - We have proven global, a-priori estimates for the error between the solution of the original and the reduced order problem.
 - Error estimates depend on balanced truncation error estimates. (Could use other model reduction techniques).
 - Efficiency of reduced order model depends size of subdomain with nonlinearity, and interface.
- Presented existence theory for Stokes equations with Slip boundary for C^{1, \epsilon} domain, which is much better than earlier known results by Amrouche '11 (C^{1,1}) domain.

