
The Dyadic Intervals.

Definition. For each pair of integers j, k ∈ Z,
define the interval Ij,k by

Ij,k = [2−jk,2−j(k + 1)).

The collection of all such intervals is called the
collection of dyadic subintervals of R.

Lemma. Given j0, k0, j1, k1 ∈ Z, with either
j0 6= j1 or k0 6= k1, then either

(a) Ij1,k1
∩ Ij0,k0

= ∅,

(b) Ij1,k1
⊆ Ij0,k0

, or

(c) Ij0,k0
⊆ Ij1,k1

.

In the latter two cases, the smaller interval is
contained in either the right half or left half of
the larger.
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Definition. We write Ij,k = I`
j,k ∪ Ir

j,k, where

I`
j,k and Ir

j,k are dyadic intervals at scale j + 1,

to denote the left half and right half of the

interval Ij,k. In fact, I`
j,k = Ij+1,2k and Ir

j,k =

Ij+1,2k+1.
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Dyadic Step Functions.

Definition. A dyadic step function is a step

function f(x) with the property that for some

j ∈ Z, f(x) is constant on all dyadic intervals

Ij,k, k ∈ Z. We say in this case that f(x) is a

scale j dyadic step function.

Remark. (a) For each j ∈ Z, the collection

of all scale j dyadic step functions is a linear

space. This means that if f(x) and g(x) are

scale j dyadic step functions, then so is a f(x)+

b g(x) for any constants a and b.

(b) If f(x) is a scale j dyadic step function on

an interval I, then f(x) is also a scale j′ dyadic

step function on I for any j′ ≥ j.
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Dilation and Translation.

Definition Given a > 0, the dilation operator,
Da is given by

Daf(x) = a1/2 f(ax).

Given b ∈ R, the translation operator, Tb is
given by

Tbf(x) = f(x− b).

Remark. Note that if a > 1, then Daf(x) is
a “narrowed down” version of f(x), and if 0 <
a < 1, then Daf(x) is a “spread out” version
of f(x).

Lemma. For every f(x) and g(x) defined on
R, and for every a > 0, b ∈ R, the following
hold.

(a) DaTbf(x) = a1/2f(ax− b).

(b) DaTbf(x) = Ta−1bDaf(x).
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The Haar system.

Definition. Let p(x) = 1[0,1)(x). (Note: If E

is any subset of R then 1E(x) is the function
that is 1 if x ∈ E and 0 if x /∈ E. It is referred
to as the characteristic function or indicator
function of E).

For each j, k ∈ Z, define

pj,k(x) = 2j/2 p(2jx− k) = D2jTkp(x).

The collection {pj,k(x)}j,k∈Z is referred to as
the system of Haar scaling functions. For each
j ∈ Z, the collection {pj,k(x)}k∈Z is referred to
as the system of scale j Haar scaling functions.

Let h(x) = 1[0,1/2)(x)−1[1/2,1)(x), and for each
j, k ∈ Z, define

hj,k(x) = 2j/2 h(2jx− k) = D2jTkh(x).

The collection {hj,k(x)}j,k∈Z is referred to as
the Haar system on R. For each j ∈ Z, the col-
lection {hj,k(x)}k∈Z is referred to as the system
of scale j Haar functions.
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Remark. (a) For each j, k ∈ Z,

pj,k(x) = 2j/2 1Ij,k
(x),

hj,k(x) = 2j/2 (1
I`
j,k

(x)− 1Ir
j,k

(x))

= 2j/2 (1Ij+1,2k
(x)− 1Ij+1,2k+1

(x)).

Both pj,k(x) and hj,k(x) are supported on the

interval Ij,k and neither one vanishes on that

interval. We associate to each interval Ij,k the

pair of functions pj,k(x) and hj,k(x).

(b) For each j, k ∈ Z, pj,k(x) is a scale j dyadic

step function (hence also a scale j + 1 dyadic

step function), and hj,k(x) is a scale j+1 dyadic

step function.
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(c) For each j, k ∈ Z,
∫

R
pj,k(x) dx =

∫

Ij,k

pj,k(x) dx = 2−j/2,

∫

R
|pj,k(x)|2 dx =

∫

Ij,k

|pj,k(x)|2 dx = 1,

∫

R
hj,k(x) dx =

∫

Ij,k

hj,k(x) dx = 0,

and
∫

R
|hj,k(x)|2 dx =

∫

Ij,k

|hj,k(x)|2 dx = 1.
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Orthogonality of functions.

Definition. We define the inner product of
two functions defined on an interval I by

〈f, g〉 =
∫

I
f(x) g(x) dx.

Two functions on I are said to be orthogonal
if 〈f, g〉 = 0.

A collection of functions {gn(x)}n∈N on I is an
orthogonal system (on I) provided that

(a) 〈gn, gm〉 = 0 if n 6= m, and

(b) 〈gn, gn〉 =
∫

I
|gn(x)|2 dx > 0. (This says in

particular that none of the gn(x) can be iden-
tically zero.)

The collection {gn(x)}n∈N is an orthonormal
system (on I) provided that it is an orthogonal
system on I and

(b’) 〈gn, gn〉 =
∫

I
|gn(x)|2 dx = 1.
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Orthogonality of the Haar system.

Theorem. The Haar system (on R) is an or-

thonormal system on R.

Proof:

Theorem. Given any j ∈ Z, the collection of

scale j Haar scaling functions,

{pj,k(x): k ∈ Z},
is an orthonormal system on R.

Theorem. Given J ∈ Z, the following hold.

(a) {pJ,k(x), hj,k(x): j ≥ J, k ∈ Z} is an or-

thonormal system (on R).

(b) {pJ,k(x), hJ,k(x): k ∈ Z} is an orthonormal

system (on R).
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The Splitting Lemma.

Lemma. Let j ∈ Z, and let gj(x) be a scale j

dyadic step function. Then gj(x) can be writ-

ten as gj(x) = rj−1(x)+gj−1(x), where rj−1(x)

has the form

rj−1(x) =
∑

k

aj−1(k)hj−1,k(x),

for some coefficients {aj−1(k)}k∈Z, and gj−1(x)

is a scale j − 1 dyadic step function.

Moreover, gj−1(x) and rj−1(x) are orthogonal.

Proof:
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The Haar basis on [0,1].

Definition. For any integer J ≥ 0, the scale J

Haar system on [0,1] is the collection

{pJ,k(x): 0 ≤ k ≤ 2J − 1}
∪{hj,k(x): j ≥ J; 0 ≤ k ≤ 2j − 1}.

When J = 0, this collection will be referred to

simply as the Haar system on [0,1].

Theorem. The Haar system on [0,1] is a com-

plete orthonormal system on [0,1]. This means

that every function f(x) defined on [0,1] can

be written as a convergent Fourier series as

f(x) = 〈f, p0,0〉 p0,0(x)+
∞∑

j=0

2j−1∑

k=0

〈f, hj,k〉hj,k(x)

where the numbers {〈f, p0,0〉, 〈f, hj,k〉} are re-

ferred to as the Haar coefficients of f . The

convergence of the series is in the sense of L2

or mean square convergence.
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Proof:

(1) That the Haar system is an orthonormal

system has already been established.

(2) It remains to show that each function f(x)

on [0,1] has the representation described. This

will follow directly from the Splitting Lemma

once we establish the following claim. The

claim will not be proved here but I will argue

that it is plausible.

Claim. We can find a sequence of functions

{hj}∞j=0 such that each hj is a scale j dyadic

step function, and that limj→∞ hj = f in the

sense of convergence in mean square (or L2).

In other words,
∫ 1

0
|f(x)− hj(x)|2 dx → 0 as j →

∞.

(3) Assuming the claim is true, let ej(x) =

f(x)−hj(x). Then
∫ 1

0
|ej(x)|2 dx → 0 as j →∞.
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(4) Fix any J ≥ 0 and take hJ(x) from the

above sequence. We will have hJ play the role

of gJ in the Splitting Lemma. By the Splitting

Lemma, we can write

hJ(x) = gJ−1(x) +
2J−1−1∑

k=0

aJ−1(k)hJ−1,k(x)

= gJ−2(x) +
J−1∑

j=J−2

2j−1∑

k=0

aj(k)hj,k(x)

= gJ−3(x) +
J−1∑

j=J−3

2j−1∑

k=0

aj(k)hj,k(x)

= · · ·

= g0(x) +
J−1∑

j=0

2j−1∑

k=0

aj(k)hj,k(x).
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(5) Since g0(x) is a scale 0 dyadic step func-
tion, it is a constant multiple of p0,0(x). Hence
we have established that for some constants
b0(0) and aj(k) and for each J,

f(x) = b0(0) p0,0(x)

+
J−1∑

j=0

2j−1∑

k=0

aj(k)hj,k(x) + eJ(x).

(6) By general properties of orthonormal sys-
tems that we will learn later, we can specify
the coefficients above to be just what we want
them to be. Specifically, we can write

f(x) = 〈f, p0,0〉 p0,0(x)

+
J−1∑

j=0

2j−1∑

k=0

〈f, hj,k〉hj,k(x) + ẽJ(x)

where
∫ 1

0
|ẽJ(x)|2 dx ≤

∫ 1

0
|eJ(x)|2 dx.

As J →∞,
∫ 1

0
|ẽJ(x)|2 → 0 so that

f(x) = 〈f, p0,0〉 p0,0(x)+
∞∑

j=0

2j−1∑

k=0

〈f, hj,k〉hj,k(x).
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