The Dyadic Intervals.

Definition. For each pair of integers 35, k € Z,
define the interval Ij,k by

Lix=1[277k,277(k+ 1)).
T he collection of all such intervals is called the
collection of dyadic subintervals of R.

Lemma. Given jo, ko, 1, k1 € 4, with either
jo & j1 or kg # k1, then either

(a) 1 ]‘C]_ O ko — ®7
(b) I J1,k IJo kor OF

() 1 Jjo.k CIJl kq-

In the latter two cases, the smaller interval is
contained in either the right half or left half of
the larger.



Definition. We write I, = I, UI},, where
Ifk and I;Tk are dyadic intervals at scale 7+ 1,
to denote the left half and right half of the
interval I;;. In fact, If, = I 11, and I, =
Ljt1,2k+1-



Dyadic Step Functions.

Definition. A dyadic step function is a step
function f(x) with the property that for some
j €7, f(x) is constant on all dyadic intervals
I, k €7Z. We say in this case that f(z) is a

J
scale 5 dyadic step function.

Remark. (a) For each j € Z, the collection
of all scale 3 dyadic step functions is a linear
space. This means that if f(x) and g(xz) are
scale j dyadic step functions, then soisa f(xz)+
bg(x) for any constants a and b.

(b) If f(x) is a scale j dyadic step function on
an interval I, then f(z) is also a scale 5’ dyadic
step function on I for any j’ > j.



Dilation and Translation.

Definition Given a > 0, the dilation operator,
D, is given by
Dof(x) = al/zf(aa:).

Given b € R, the translation operator, Ty is
given by

Tyf(z) = f(z —b).

Remark. Note that if a > 1, then D,f(x) is
a “narrowed down’ version of f(x), and if 0 <
a < 1, then Dqyf(x) is a “spread out” version

of f(x).

Lemma. For every f(x) and g(x) defined on
R, and for every a > 0, b € R, the following
hold.

(@) DoTyf(x) = a'/? f(az —b).

(D) DaTpf(x) =T,—1,Daf(x).



The Haar system.

Definition. Let p(x) = 1[071)(31:). (Note: If E
is any subset of R then 1g(x) is the function
thatislifxe€ E and O if z € E. It is referred
to as the characteristic function or indicator
function of FE).

For each j, k € Z, define
pjk(x) = 2112 p(2/z — k) = DyTip().

The collection {p;(x)}, ez is referred to as
the system of Haar scaling functions. For each
j € Z, the collection {p; ;(x)}rez is referred to
as the system of scale 5 Haar scaling functions.

Let h(x) = 1[071/2)@8)—1[1/271)(:6), and for each
1, k € 4, define

hig(z) = 29/2 h(20z — k) = DojTih(z).

The collection {h;(z)}; ez is referred to as
the Haar system on R. For each 5 € Z, the col-
lection {h; ,(z) }rez is referred to as the system
of scale 3 Haar functions.



Remark. (a) For each j, k € Z,

pjk(z) =2121 (o),

h],k(a:) 2j/2 (]-]fk(x) — 1[;’1{:(33))

= 22, @ =15, @),

Both p; () and h;(z) are supported on the
interval I;; and neither one vanishes on that
interval. We associate to each interval I, the
pair of functions p, r(z) and h; ().

(b) For each j, k € Z, p; ;(x) is a scale j dyadic
step function (hence also a scale j + 1 dyadic
step function), and hj,k(x) is a scale j+1 dyadic
step function.



(c) For each 3, k € Z,

/Rpj,k(w) dr = /I pip(x) de = 279/2,

7,k

L pir@Pde= [ |p;p(@)de =1
k

J>

th,k(l‘) dr = /Ij,k hik(x)dr =0,
and

/R h g (2)|? dz = /I

J>

|hj,k(x)|2 dr = 1.
k



Orthogonality of functions.

Definition. We define the inner product of
two functions defined on an interval I by

= [ @@ da
Two functions on I are said to be orthogonal

it (f,g) =

A collection of functions {gn(x)},,en On I is an
orthogonal system (on I) provided that

(a) {gn,gm) = 0 if n %= m, and

(b) {gn,gn) =/I|gn(m)|2dm> 0. (This says in

particular that none of the ¢g,(x) can be iden-
tically zero.)

The collection {gn(z)},eN IS an orthonormal
system (on I) provided that it is an orthogonal
system on I and

(b) gnagn /|gn(£€)|2 r=1.



Orthogonality of the Haar system.

Theorem. The Haar system (on R) is an or-
thonormal system on R.

Proof:

Theorem. Given any 5 € Z, the collection of
scale 5 Haar scaling functions,

is an orthonormal system on R.

Theorem. Given J € Z, the following hold.

(@) {pjr(x), hjr(x):j > J, k € Z} is an or-
thonormal system (on R).

(b) {pjr(x), hjr(x):k € Z} is an orthonormal
system (on R).



The Splitting Lemma.

Lemma. Let j € Z, and let g;(z) be a scale j
dyadic step function. Then g,;(xz) can be writ-

tenas gj(z) =rj_1(x)+g;—1(x), where r;_1(x)
has the form

ri—1(x) =) aj_1(k) hj_1 (),
k

for some coefficients {a;_1(k)}xecz, and g;_1(z)
is a scale 7 — 1 dyadic step function.

Moreover, g;_1(z) and r;_1(z) are orthogonal.

Proof:
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The Haar basis on [0, 1].

Definition. For any integer J > 0, the scale J
Haar system on [0, 1] is the collection

{psr(@):0<k<2/ -1}
U{hji(x):j > J; 0< k<2 —1}.

When J = 0, this collection will be referred to
simply as the Haar system on [0, 1].

Theorem. The Haar system on [0, 1] isa com-
plete orthonormal system on [0, 1]. This means
that every function f(x) defined on [0, 1] can
be written as a convergent Fourier series as

oo 27-—1

f(@) = (fipo,0)poo(x)+ >, D> (fihjr) hjrx)

7=0 k=0
where the numbers {(f,po o), (f,hjL)} are re-
ferred to as the Haar coefficients of f. The
convergence of the series is in the sense of L2
Oor mean square convergence.
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Proof:

(1) That the Haar system is an orthonormal
system has already been established.

(2) It remains to show that each function f(x)
on [0, 1] has the representation described. This
will follow directly from the Splitting Lemma
once we establish the following claim. The
claim will not be proved here but I will argue
that it is plausible.

Claim. We can find a sequence of functions
{hj};?ozo such that each h; is a scale j dyadic
step function, and that Iimj_m hj = f in the
sense of convergence in mean square (or L2).

1
In other words, /o |f(x) — hj(x)|2dx —0asj —

0.

(3) Assuming the claim is true, let e;(z) =
1
f(xz)—h;(x). Then/o |ej(a:)|2d:v — 0 as j — oo.
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(4) Fix any J > 0 and take hj(xz) from the
above sequence. We will have hj play the role
of g7 in the Splitting Lemma. By the Splitting
Lemma, we can write

2J/-1_1

gj—1(x)+ > aj_1(k)hj_q5(x)
k=0
J—1 2/-1

= gro@)+ > > ajk)h;i(x)

j=J—-2 k=0
J—1 271

= gj_3(@)+ > > aj(k)h;i(x)

j=J—3 k=0

hy(z)

J—127-1

go(x) + > > aj(k)hjp(z).

j=0 k=0
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(5) Since gpo(x) is a scale 0 dyadic step func-
tion, it is a constant multiple of p07o(:£). Hence
we have established that for some constants

bo(0) and a;(k) and for each J,

f(x) = bo(0)po,o(x)
J—127-1
+ 3 Y aj(k) hjp(z) + ey(a).

j=0 k=0

(6) By general properties of orthonormal sys-
tems that we will learn later, we can specify
the coefficients above to be just what we want
them to be. Specifically, we can write

f(xz) = (f,po,0) po,o(x)
J—127-1
+ > D (fihjk) hyp(x) +e5(x)

=0 k=0
1 2 1 2
where /O lej(x)]“dr < /O lej(x)| dx.
1
As J — oo, /o €;(x)]? — 0 so that

oo 27-1

f(x) = (fipo,0)poo(x)+ D . D (fihjk) hjr(x).

j=0 k=0
14



