Given that the eigenvalues of the matrix A are $\lambda=0$ and $\lambda=1$, find all of the eigenvectors.

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 0 & 0
\end{array}\right)
$$

Solution: Finding the eigenvectors corresponding to $\lambda=0$, we solve $A \mathbf{x}=\mathbf{0}$, that is,

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

This is simple enough to be solved directly without using Gaussian elimination, since the first equation is $x_{1}=0$, is equivalent to the third, $3 x_{1}=0$, and we can take $x_{3}=t$ as the free variable. The second equation gives $x_{2}=2 t$, and so the eigenvectors all have the form

$$
\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=t\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right) .
$$

Finding the eigenvectors corresponding to $\lambda=1$, we solve $(A-I) \mathbf{x}=\mathbf{0}$, that is,

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
2 & 0 & -2 \\
3 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Again this is simple enough to be solved directly without using Gaussian elimination. The last two equations reduce to the 2×2 system $2 x_{1}-2 x_{3}=0 ; 3 x_{1}-x_{3}=0$ which solves to $x_{1}=x_{3}=0$. We can take $x_{2}=t$ to be a free variable, and hence all eigenvectors have the form

$$
\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=t\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Given that the eigenvalues of the matrix A are $\lambda=0$ and $\lambda=4$, find all of the eigenvectors.

$$
A=\left(\begin{array}{ccc}
5 & -1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Solution: Finding the eigenvectors corresponding to $\lambda=0$, we solve $A \mathbf{x}=\mathbf{0}$, that is,

$$
\left(\begin{array}{ccc}
5 & -1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This is simple enough to be solved directly without using Gaussian elimination. Taking $x_{3}=t$ to be the free variable leaves us with the 2×2 system $5 x_{1}-x_{2}=0 ; x_{1}+3 x_{2}=0$ which solves to $x_{1}=x_{2}=0$. Hence the eigenvectors all have the form

$$
\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=t\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Finding the eigenvectors corresponding to $\lambda=4$, we solve $(A-4 I) \mathbf{x}=\mathbf{0}$, that is,

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & -4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Again this is simple enough to be solved directly without using Gaussian elimination. The last equation is $-4 x_{3}=0$ giving $x_{3}=0$. This leaves us with the single equation $x_{1}-x_{2}=0$. Taking $x_{2}=t$ to be a free variable leads to $x_{1}=t$. Hence all eigenvectors have the form

$$
\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=t\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) .
$$

Given that two eigenvalues of the matrix A are $\lambda=0$ and $\lambda=1$, find all of the corresponding eigenvectors.

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Solution: Finding the eigenvectors corresponding to $\lambda=0$, we solve $A \mathbf{x}=\mathbf{0}$, that is,

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

This is simple enough to be solved directly without using Gaussian elimination. The first equation gives $x_{1}=0$, and the remaining equations reduce to the single equation $x_{2}+x_{3}=0$. Taking $x_{3}=t$ as the free variable, we conclude that $x_{2}=-t$ and hence that all eigenvectors have the form

$$
\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=t\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) .
$$

Finding the eigenvectors corresponding to $\lambda=1$, we solve $(A-I) \mathbf{x}=\mathbf{0}$, that is,

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Again this is simple enough to be solved directly without using Gaussian elimination. Taking $x_{1}=t$ to be a free variable, the second equation gives $x_{3}=-t$, and the third gives $x_{2}=-t$. If we had started with any other variable as free we would arrive at the same conclusion. Hence all eigenvectors have the form

$$
\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=t\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) .
$$

