Use the Laplace transform (and the table below) to solve the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution: Taking the Laplace transform of both sides gives

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime \prime}+3 y^{\prime}+2 y\right\} & =0 \\
\mathcal{L}\left\{y^{\prime \prime}\right\}+3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\} & =0 \\
s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)+3(s \mathcal{L}\{y\}-y(0))+2 \mathcal{L}\{y\} & =0 \\
\left(s^{2}+3 s+2\right) \mathcal{L}\{y\}-s-3 & =0
\end{aligned}
$$

so that

$$
\mathcal{L}\{y\}=\frac{s+3}{s^{2}+3 s+2} .
$$

Expanding this last term in partial fractions gives

$$
\frac{s+3}{s^{2}+3 s+2}=\frac{s+3}{(s+2)(s+1)}=\frac{A}{s+2}+\frac{B}{s+1}=\frac{A(s+1)+B(s+2)}{(s+2)(s+1)}
$$

so that

$$
A(s+1)+B(s+2)=s+3
$$

Plugging in $s=-2$ gives $A=-1$ and plugging in $s=-1$ gives $B=2$. Therefore

$$
y=\mathcal{L}^{-1}\left\{\frac{2}{s+1}-\frac{1}{s+2}\right\}=2 e^{-t}-e^{-2 t}
$$

Use the Laplace transform (and the table below) to solve the initial value problem

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

Solution: Taking the Laplace transform of both sides gives

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime \prime}-4 y^{\prime}+4 y\right\} & =0 \\
\mathcal{L}\left\{y^{\prime \prime}\right\}-4 \mathcal{L}\left\{y^{\prime}\right\}+4 \mathcal{L}\{y\} & =0 \\
s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)-4(s \mathcal{L}\{y\}-y(0))+4 \mathcal{L}\{y\} & =0 \\
\left(s^{2}-4 s+4\right) \mathcal{L}\{y\}-s+3 & =0
\end{aligned}
$$

so that

$$
\mathcal{L}\{y\}=\frac{s-3}{s^{2}-4 s+4}
$$

Expanding this last term in partial fractions gives

$$
\frac{s-3}{s^{2}-4 s+4}=\frac{s-3}{(s-2)^{2}}=\frac{A}{s-2}+\frac{B}{(s-2)^{2}}=\frac{A(s-2)+B}{(s-2)^{2}}
$$

so that

$$
A(s-2)+B=s-3 .
$$

Plugging in $s=2$ gives $B=-1$ and taking a derivative gives immediately $A=1$. Therefore

$$
y=\mathcal{L}^{-1}\left\{\frac{1}{s-2}-\frac{1}{(s-2)^{2}}\right\}=e^{2 t}-t e^{2 t} .
$$

Use the Laplace transform (and the table below) to solve the initial value problem

$$
y^{\prime \prime}-y^{\prime}-6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

Solution: Taking the Laplace transform of both sides gives

$$
\begin{aligned}
\mathcal{L}\left\{y^{\prime \prime}-y^{\prime}-6 y\right\} & =0 \\
\mathcal{L}\left\{y^{\prime \prime}\right\}-\mathcal{L}\left\{y^{\prime}\right\}-6 \mathcal{L}\{y\} & =0 \\
s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)-(s \mathcal{L}\{y\}-y(0))-6 \mathcal{L}\{y\} & =0 \\
\left(s^{2}-s-6\right) \mathcal{L}\{y\}-s & =0
\end{aligned}
$$

so that

$$
\mathcal{L}\{y\}=\frac{s}{s^{2}-s-6} .
$$

Expanding this last term in partial fractions gives

$$
\frac{s-5}{s^{2}-s-6}=\frac{s}{(s+2)(s-3))}=\frac{A}{s+2}+\frac{B}{(s-3)}=\frac{A(s-3)+B}{(s+2)}
$$

so that

$$
A(s-3)+B(s+2)=s
$$

Plugging in $s=-2$ gives $A=2 / 5$ and plugging in $s=3$ gives $B=3 / 5$. Therefore

$$
y=\mathcal{L}^{-1}\left\{\frac{2}{5} \frac{1}{s+2}+\frac{3}{5} \frac{1}{(s-3)}\right\}=\frac{2}{5} e^{-2 t}+\frac{3}{5} e^{3 t} .
$$

