Using the table below, find the inverse Laplace transform of the function

$$
F(s)=\frac{3 s}{s^{2}-s-6} .
$$

Solution: We need to use partial fractions to rewrite $F(s)$ in a form such that we can use the table.

$$
\frac{3 s}{s^{2}-s-6}=\frac{3 s}{(s-3)(s+2)}=\frac{A}{s-3}+\frac{B}{s+2}=\frac{A(s+2)+B(s-3)}{(s-3)(s+2)} .
$$

Therefore we must have

$$
A(s+2)+B(s-3)=3 s .
$$

Plugging in $s=3$ gives $5 A=9$ or $A=9 / 5$, and plugging in $s=-2$ gives $-5 B=-6$ or $B=6 / 5$. Therefore we have that

$$
F(s)=\frac{3 s}{s^{2}-s-6}=\frac{9}{5} \frac{1}{s-3}+\frac{6}{5} \frac{1}{s+2}
$$

so that

$$
\mathcal{L}^{-1}(F(s))=\frac{9}{5} \mathcal{L}^{-1}\left(\frac{1}{s-3}\right)+\frac{6}{5} \mathcal{L}^{-1}\left(\frac{1}{s+2}\right) .
$$

consulting the table gives the answer

$$
\mathcal{L}^{-1}(F(s))=\frac{9}{5} e^{3 t}+\frac{6}{5} e^{-2 t} .
$$

Using the table below, find the inverse Laplace transform of the function

$$
F(s)=\frac{2 s-3}{s^{2}-4} .
$$

Solution: We need to use partial fractions to rewrite $F(s)$ in a form such that we can use the table.

$$
\frac{2 s-3}{s^{2}-4}=\frac{2 s-3}{(s-2)(s+2)}=\frac{A}{s-2}+\frac{B}{s+2}=\frac{A(s+2)+B(s-2)}{(s-2)(s+2)} .
$$

Therefore we must have

$$
A(s+2)+B(s-2)=2 s-3 .
$$

Plugging in $s=2$ gives $4 A=1$ or $A=1 / 4$, and plugging in $s=-2$ gives $-4 B=-7$ or $B=7 / 4$. Therefore we have that

$$
F(s)=\frac{2 s-3}{s^{2}-4}=\frac{1}{4} \frac{1}{s-2}+\frac{7}{4} \frac{1}{s+2}
$$

so that

$$
\mathcal{L}^{-1}(F(s))=\frac{1}{4} \mathcal{L}^{-1}\left(\frac{1}{s-2}\right)+\frac{7}{4} \mathcal{L}^{-1}\left(\frac{1}{s+2}\right) .
$$

consulting the table gives the answer

$$
\mathcal{L}^{-1}(F(s))=\frac{1}{4} e^{2 t}+\frac{7}{4} e^{-2 t} .
$$

Using the table below, find the inverse Laplace transform of the function

$$
F(s)=\frac{s+1}{(s-2)^{2}} .
$$

Solution: We need to use partial fractions to rewrite $F(s)$ in a form such that we can use the table.

$$
\frac{s+1}{(s-2)^{2}}=\frac{A}{s-2}+\frac{B}{(s-2)^{2}}=\frac{A(s-2)+B}{(s-2)^{2}} .
$$

Therefore we must have

$$
A(s-2)+B=s+1 .
$$

Plugging in $s=2$ gives $B=3$, and plugging in, say, $s=0$ gives $-2 A+3=1$ or $A=1$ (I could also have taken the first derivative giving directly $A=1$.). Therefore we have that

$$
F(s)=\frac{s+1}{(s-2)^{2}}=\frac{1}{s-2}+\frac{3}{(s-2)^{2}}
$$

so that

$$
\mathcal{L}^{-1}(F(s))=\mathcal{L}^{-1}\left(\frac{1}{s-2}\right)+3 \mathcal{L}^{-1}\left(\frac{1}{(s-2)^{2}}\right) .
$$

consulting the table gives the answer

$$
\mathcal{L}^{-1}(F(s))=e^{2 t}+3 t e^{2 t} .
$$

