Find the solution to the initial value problem.

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+4 y^{\prime}=0, \quad y(0)=1, \quad y^{\prime}(0)=-1, \quad y^{\prime \prime}(0)=0
$$

Solution: The characteristic equation of this ODE is $r^{3}-4 r^{2}+4 r=0$, which factors as $r(r-2)^{2}=0$ and hence has solutions $r_{1}=0, r_{2}=2$, where r_{2} is a double root. Therefore the the general solution is given by

$$
y(t)=c_{1}+c_{2} e^{2 t}+c_{3} t e^{2 t} .
$$

We have then $y^{\prime}(t)=2 c_{2} e^{2 t}+c_{3}\left(2 t e^{2 t}+e^{2 t}\right)$ and $y^{\prime \prime}(t)=4 c_{2} e^{2 t}+c_{3}\left(4 t e^{2 t}+4 e^{2 t}\right)$. Plugging in the initial conditions gives the system of equations

$$
\begin{aligned}
1 & =c_{1}+c_{2} \\
-1 & =2 c_{2}+c_{3} \\
0 & =4 c_{2}+4 c_{3} .
\end{aligned}
$$

Subtracting twice the second equation to the third gives $c_{3}=1$, and plugging this into the last equation gives $c_{2}=-1$, and plugging this into the first equation gives $c_{1}=2$. Hence the final solution is

$$
y(t)=2-e^{2 t}+t e^{2 t} .
$$

Find the solution to the initial value problem.

$$
y^{\prime \prime \prime}+y^{\prime}=0, \quad y(0)=0, \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=2
$$

Solution: The characteristic equation of this ODE is $r^{3}+r=0$, which factors as $r\left(r^{2}+1\right)=0$ and hence has solutions $r_{1}=0, r_{2}=i, r_{3}=-i$. Therefore the the general solution is given by

$$
y(t)=c_{1}+c_{2} \cos (t)+c_{3} \sin (t) .
$$

We have then $y^{\prime}(t)=-c_{2} \sin (t)+c_{3} \cos (t)$ and $y^{\prime \prime}(t)=-c_{2} \cos (t)-c_{3} \sin (t)$. Plugging in the initial conditions gives the system of equations

$$
\begin{aligned}
& 0=c_{1}+c_{2} \\
& 1=c_{3} \\
& 2=-c_{2}
\end{aligned}
$$

which leads to $c_{1}=2, c_{2}=-2$, and $c_{3}=1$. Hence the final solution is

$$
y(t)=2-2 \cos (t)+\sin (t) .
$$

Find the solution to the initial value problem.

$$
y^{\prime \prime \prime}+5 y^{\prime \prime}+6 y^{\prime}=0, \quad y(0)=0, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1
$$

Solution: The characteristic equation of this ODE is $r^{3}+5 r^{2}+6 r=0$, which factors as $r(r+3)(r+2)=0$ and hence has solutions $r_{1}=0, r_{2}=-3, r_{3}=-2$. Therefore the the general solution is given by

$$
y(t)=c_{1}+c_{2} e^{-3 t}+c_{3} e^{-2 t}
$$

We have then $y^{\prime}(t)=-3 c_{2} e^{-3 t}-2 c_{3} e^{-2 t}$ and $y^{\prime \prime}(t)=9 c_{2} e^{-3 t}+4 c_{3} e^{-2 t}$. Plugging in the initial conditions gives the system of equations

$$
\begin{aligned}
& 0=c_{1}+c_{2}+c_{3} \\
& 0=-3 c_{2}-2 c_{3} \\
& 1=9 c_{2}+4 c_{3} .
\end{aligned}
$$

Adding 3 times the second equation to the third gives $c_{3}=-1 / 2$, and plugging this into the second equation gives $c_{2}=1 / 3$, and plugging this into the first equation gives $c_{1}=1 / 6$. Hence the final solution is

$$
y(t)=\frac{1}{6}+\frac{1}{3} e^{-3 t}-\frac{1}{2} e^{-2 t} .
$$

