Use the method of variation of parameters to find a particular solution to the differential equation.

$$
y^{\prime \prime}+2 y^{\prime}+y=2 e^{-t} .
$$

Solution: The characteristic polynomial of this equation is $r^{2}+2 r+1=(r+1)^{2}$ which has a double root at $r=-1$. Hence a fundamental set of solutions to the homogeneous equation is $\left\{e^{-t}, t e^{-t}\right\}$.

We look for a particular solution of the form $Y(t)=u_{1}(t) e^{-t}+u_{2}(t) t e^{-t}$. This leads to the system of equations

$$
\begin{aligned}
u_{1}^{\prime}(t) e^{-t}+u_{2}^{\prime}(t) t e^{-t} & =0 \\
-u_{1}^{\prime}(t) e^{-t}+u_{2}^{\prime}(t)\left(-t e^{-t}+e^{-t}\right) & =2 e^{-t} .
\end{aligned}
$$

Adding the equations together and factoring out the e^{-t} gives $u_{2}^{\prime}(t)=2$, so that $u_{2}(t)=$ $2 t$. Plugging this solution into the first equation gives $u_{1}^{\prime}(t)=-2 t$, so that $u_{1}(t)=-t^{2}$. Therefore, a particular solution is given by

$$
Y(t)=-t^{2} e^{-t}+2 t^{2} e^{-t}=t^{2} e^{-t}
$$

Use the method of variation of parameters to find a particular solution to the differential equation.

$$
y^{\prime \prime}-2 y^{\prime}+y=4 e^{-3 t} .
$$

Solution: The characteristic polynomial of this equation is $r^{2}-2 r+1=(r-1)^{2}$ which has a double root at $r=1$. Hence a fundamental set of solutions to the homogeneous equation is $\left\{e^{t}, t e^{t}\right\}$.

We look for a particular solution of the form $Y(t)=u_{1}(t) e^{t}+u_{2}(t) t e^{t}$. This leads to the system of equations

$$
\begin{aligned}
u_{1}^{\prime}(t) e^{t}+u_{2}^{\prime}(t) t e^{t} & =0 \\
u_{1}^{\prime}(t) e^{t}+u_{2}^{\prime}(t)\left(t e^{t}+e^{t}\right) & =4 e^{-3 t}
\end{aligned}
$$

Subtracting the second equation from the first gives $u_{2}^{\prime}(t)=4 e^{-4 t}$, so that $u_{2}(t)=-e^{-4 t}$. Plugging this solution into the first equation gives $u_{1}^{\prime}(t)=-4 t e^{-4 t}$, so that $u_{1}(t)=t e^{-4 t}+$ $(1 / 4) e^{-4 t}$. Therefore, a particular solution is given by

$$
Y(t)=t e^{-3 t}+\frac{1}{4} e^{-3 t}-t e^{-3 t}=\frac{1}{4} e^{-3 t}
$$

Use the method of variation of parameters to find a particular solution to the differential equation.

$$
y^{\prime \prime}+2 y^{\prime}=4 e^{3 t} .
$$

Solution: The characteristic polynomial of this equation is $r^{2}+2 r=r(r+2)$ which has roots at $r=0$ and $r=-2$. Hence a fundamental set of solutions to the homogeneous equation is $\left\{1, e^{-2 t}\right\}$.

We look for a particular solution of the form $Y(t)=u_{1}(t)+u_{2}(t) e^{-2 t}$. This leads to the system of equations

$$
\begin{aligned}
u_{1}^{\prime}(t)+u_{2}^{\prime}(t) e^{-2 t} & =0 \\
-2 u_{2}^{\prime}(t) e^{-2 t} & =4 e^{3 t}
\end{aligned}
$$

The second equation gives immediately $u_{2}^{\prime}(t)=-2 e^{5 t}$, so that $u_{2}(t)=-(2 / 5) e^{5 t}$. Plugging this solution into the first equation gives $u_{1}^{\prime}(t)=2 e^{3 t}$, so that $u_{1}(t)=(2 / 3) e^{3 t}$. Therefore, a particular solution is given by

$$
Y(t)=\frac{2}{3} e^{3 t}-\frac{2}{5} e^{3 t}=\frac{4}{15} e^{3 t}
$$

