Use the method of undetermined coefficients to find a particular solution to the differential equation.

$$
y^{\prime \prime}+2 y^{\prime}+y=2 e^{-t} .
$$

(Hint: A fundamental system for the homogeneous equation is $\left\{e^{-t}, t e^{-t}\right\}$.)

Solution: Since the right hand side of the equation is a solution to the homogeneous equation, and since t multiplied by it is also a solution, we look for a particular solution of the form $Y(t)=A t^{2} e^{-t}$. We have

$$
\begin{aligned}
Y^{\prime}(t) & =-A t^{2} e^{-t}+2 A t e^{-t} \\
Y^{\prime \prime}(t) & =A t^{2} e^{-t}-4 A t e^{-t}+2 A e^{-t}
\end{aligned}
$$

Plugging into the original equation gives

$$
A t^{2} e^{-t}-4 A t e^{-t}+2 A e^{-t}-2 A t^{2} e^{-t}+4 A t e^{-t}+A t^{2} e^{-t}=2 e^{-t}
$$

Canceling terms gives

$$
2 A e^{-t}=2 e^{-t}
$$

so that $A=1$. Therefore, a particular solution is

$$
Y(t)=t^{2} e^{-t}
$$

Use the method of undetermined coefficients to find a particular solution to the differential equation.

$$
y^{\prime \prime}+y^{\prime}+y=t^{2}+t
$$

(Hint: It will be enough to look for a particular solution in the form of a general quadratic polynomial.)

Solution: Following the hint, we look for a particular solution of the form $Y(t)=A t^{2}+B t+C$. We have

$$
\begin{aligned}
Y^{\prime}(t) & =2 A t+B \\
Y^{\prime \prime}(t) & =2 A .
\end{aligned}
$$

Plugging into the original equation gives

$$
2 A+2 A t+B+A t^{2}+B t+C=t^{2}+t
$$

Gathering like terms gives

$$
A t^{2}+(2 A+B) t+(2 A+B+C)=t^{2}+t
$$

which leads to

$$
\begin{aligned}
A & =1 \\
2 A+B & =1 \\
2 A+B+C & =0
\end{aligned}
$$

The first equation gives $A=1$, the second, $B=-1$, and the third, $C=-1$. Therefore, a particular solution is

$$
Y(t)=t^{2}-t-1
$$

Use the method of undetermined coefficients to find a particular solution to the differential equation.

$$
y^{\prime \prime}+2 y^{\prime}=4 \sin (2 t) .
$$

Solution: We look for a particular solution of the form $Y(t)=A \cos (2 t)+B \sin (2 t)$. We have

$$
\begin{aligned}
Y^{\prime}(t) & =-2 A \sin (2 t)+2 B \cos (2 t) \\
Y^{\prime \prime}(t) & =-4 A \cos (2 t)-4 B \sin (2 t)
\end{aligned}
$$

Plugging into the original equation gives

$$
-4 A \cos (2 t)-4 B \sin (2 t)-4 A \sin (2 t)+4 B \cos (2 t)=4 \sin (2 t)
$$

Gathering like terms gives

$$
(-4 A+4 B) \cos (2 t)+(-4 A-4 B) \sin (2 t)=4 \sin (2 t)
$$

which leads to

$$
\begin{aligned}
& -4 A+4 B=0 \\
& -4 A-4 B=4
\end{aligned}
$$

The first equation gives $A=B$, and the second, $-8 B=4$, so that $B=-1 / 2$ and $A=-1 / 2$. Therefore, a particular solution is

$$
Y(t)=-\frac{1}{2} \cos (2 t)-\frac{1}{2} \sin (2 t)
$$

