Find the general solution to the equation

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

of the form

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

and find the Wronskian of the solutions y_{1} and y_{2} that you found.
Solution: The characteristic equation of this ODE is $r^{2}+4 r+3=0$, which factors to $(r+3)(r+1)=0$ so that the roots are $r_{1}=-3$ and $r_{2}=-1$. Hence two solutions to the equation are $y_{1}(t)=e^{-3 t}$ and $y_{2}(t)=e^{-t}$ and the general solution can be written

$$
y(t)=c_{1} e^{-3 t}+c_{2} e^{-t} .
$$

The Wronskian of y_{1} and y_{2} is

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=e^{-3 t}\left(-e^{-t}\right)-e^{-t}\left(-3 e^{-3 t}\right)=2 e^{-4 t}
$$

Find the general solution to the equation

$$
y^{\prime \prime}+8 y^{\prime}-9 y=0
$$

of the form

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t),
$$

and find the Wronskian of the solutions y_{1} and y_{2} that you found.
Solution: The characteristic equation of this ODE is $r^{2}+8 r-9=0$, which factors to $(r+9)(r-1)=0$ so that the roots are $r_{1}=-9$ and $r_{2}=1$. Hence two solutions to the equation are $y_{1}(t)=e^{-9 t}$ and $y_{2}(t)=e^{t}$ and the general solution can be written

$$
y(t)=c_{1} e^{-9 t}+c_{2} e^{t} .
$$

The Wronskian of y_{1} and y_{2} is

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=e^{-9 t} e^{t}-e^{t}\left(-9 e^{-9 t}\right)=10 e^{-8 t}
$$

Find the general solution to the equation

$$
2 y^{\prime \prime}-3 y^{\prime}+y=0
$$

of the form

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t),
$$

and find the Wronskian of the solutions y_{1} and y_{2} that you found.
Solution: The characteristic equation of this ODE is $2 r^{2}-3 r+1=0$, which factors to $(2 r-1)(r-1)=0$ so that the roots are $r_{1}=1 / 2$ and $r_{2}=1$. Hence two solutions to the equation are $y_{1}(t)=e^{t / 2}$ and $y_{2}(t)=e^{t}$ and the general solution can be written

$$
y(t)=c_{1} e^{t / 2}+c_{2} e^{t}
$$

The Wronskian of y_{1} and y_{2} is

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=e^{t / 2} e^{t}-e^{t} \frac{1}{2} e^{t / 2}=\frac{1}{2} e^{3 t / 2}
$$

