Solve the following exact equation: $\left(2 x y^{2}+2 y\right)+\left(2 x^{2} y+2 x\right) y^{\prime}=0$.
Solution: We are looking for a function $\Psi(x, y)$ such that $\Psi_{x}=2 x y^{2}+2 y$ and $\Psi_{y}=2 x^{2} y+2 x$. This leads to

$$
\begin{aligned}
\Psi_{x} & =2 x y^{2}+2 y \\
\Psi & =x^{2} y^{2}+2 x y+g(y) \\
\Psi_{y} & =2 x^{2} y+2 x+g^{\prime}(y) .
\end{aligned}
$$

This leads to

$$
\begin{aligned}
2 x^{2} y+2 x+g^{\prime}(y) & =2 x^{2} y+2 x \\
g^{\prime}(y) & =0 \\
g(y) & =0
\end{aligned}
$$

Therefore $\Psi=x^{2} y^{2}+2 x y$ and the solution to the ODE is given by

$$
x^{2} y^{2}+2 x y=c .
$$

Solve the following exact equation: $\left(3 x^{2}-2 x y\right)+\left(6 y^{2}-x^{2}\right) y^{\prime}=0$.
Solution: We are looking for a function $\Psi(x, y)$ such that $\Psi_{x}=3 x^{2}-2 x y$ and $\Psi_{y}=6 y^{2}-x^{2}$. This leads to

$$
\begin{aligned}
\Psi_{x} & =3 x^{2}-2 x y \\
\Psi & =x^{3}-x^{2} y+g(y) \\
\Psi_{y} & =-x^{2}+g^{\prime}(y) .
\end{aligned}
$$

This leads to

$$
\begin{aligned}
-x^{2}+g^{\prime}(y) & =6 y^{2}-x^{2} \\
g^{\prime}(y) & =6 y^{2} \\
g(y) & =2 y^{3} .
\end{aligned}
$$

Therefore $\Psi=x^{3}-x^{2} y+2 y^{3}$ and the solution to the ODE is given by

$$
x^{3}-x^{2} y+2 y^{3}=c .
$$

Solve the following exact equation: $\left(9 x^{2}+y-1\right)+(x-4 y) y^{\prime}=0$.
Solution: We are looking for a function $\Psi(x, y)$ such that $\Psi_{x}=9 x^{2}+y-1$ and $\Psi_{y}=x-4 y$. This leads to

$$
\begin{aligned}
\Psi_{x} & =9 x^{2}+y-1 \\
\Psi & =3 x^{3}+x y-x+g(y) \\
\Psi_{y} & =x+g^{\prime}(y) .
\end{aligned}
$$

This leads to

$$
\begin{aligned}
x+g^{\prime}(y) & =x-4 y \\
g^{\prime}(y) & =-4 y \\
g(y) & =-2 y^{2} .
\end{aligned}
$$

Therefore $\Psi=3 x^{3}+x y-x-2 y^{2}$ and the solution to the ODE is given by

$$
3 x^{3}+x y-x-2 y^{2}=c .
$$

