Solve the following initial value problem: $y^{\prime}+3 y=1+e^{-2 t}, y(0)=1$.
Solution: The integrating factor in this case is $\mu(t)=e^{\int 3 d t}=e^{3 t}$ which leads to the following solution.

$$
\begin{aligned}
e^{3 t} y^{\prime}+3 e^{3 t} y & =e^{3 t}\left(1+e^{-2 t}\right) \\
\frac{d}{d t}\left(e^{3 t} y\right) & =e^{3 t}+e^{t} \\
e^{3 t} y & =\frac{1}{3} e^{3 t}+e^{t}+c \\
y & =\frac{1}{3}+e^{-2 t}+c e^{-3 t}
\end{aligned}
$$

$y(0)=1$ leads to $1=1 / 3+1+c$ or $c=1 / 3$. Hence the final solution is

$$
y=\frac{1}{3}+e^{-2 t}+\frac{1}{3} e^{-3 t}
$$

Solve the following initial value problem: $y^{\prime}-2 y=t^{2} e^{2 t}, y(0)=1$.
Solution: The integrating factor in this case is $\mu(t)=e^{\int-2 d t}=e^{-2 t}$ which leads to the following solution.

$$
\begin{aligned}
e^{-2 t} y^{\prime}-2 e^{-2 t} y & =e^{-2 t}\left(t^{2} e^{2 t}\right) \\
\frac{d}{d t}\left(e^{-2 t} y\right) & =t^{2} \\
e^{-2 t} y & =\frac{1}{3} t^{3}+c \\
y & =\frac{1}{3} e^{2 t} t^{3}+c e^{2 t}
\end{aligned}
$$

$y(0)=1$ leads to $1=0+c$ or $c=1$. Hence the final solution is

$$
y=\frac{1}{3} e^{2 t} t^{3}+e^{2 t}
$$

Solve the following initial value problem: $y^{\prime}+y=t e^{-t}+1, y(0)=2$.

Solution: The integrating factor in this case is $\mu(t)=e^{\int d t}=e^{t}$ which leads to the following solution.

$$
\begin{aligned}
e^{t} y^{\prime}+e^{t} y & =e^{t}\left(t e^{-t}+1\right) \\
\frac{d}{d t}\left(e^{t} y\right) & =t+e^{t} \\
e^{t} y & =\frac{1}{2} t^{2}+e^{t}+c \\
y & =\frac{1}{2} e^{-t} t^{2}+1+c e^{-t}
\end{aligned}
$$

$y(0)=2$ leads to $2=0+1+c$ or $c=1$. Hence the final solution is

$$
y=\frac{1}{2} e^{-t} t^{2}+1+e^{-t} .
$$

