Consider an electric circuit containing a capacitor, resistor, and battery. The charge $Q(t)$ on the capacitor satisfies the equation $\frac{d Q}{d t}+\frac{Q}{C}=V$, where C the capacitance, and V is the constant voltage supplied by the battery.
(a) (3 pts.) If $Q(0)=0$, find $Q(t)$ for any time t (that is, solve the initial value problem).
(b) (2 pts.) Find the limiting value that $Q(t)$ approaches as $t \rightarrow \infty$.

Solution: (a) The equation is separable and can be rewritten $\frac{d Q}{d t}=V-\frac{Q}{C}=\frac{C V-Q}{C}$ which leads to

$$
\begin{aligned}
\frac{d Q}{d t} & =\frac{C V-Q}{C} \\
\frac{d Q}{C V-Q} & =\frac{d t}{C} \\
-\ln |C V-Q| & =\frac{t}{C}+k \\
|C V-Q| & =e^{k} e^{-t / C} \\
C V-Q & =c e^{-t / C} \\
Q & =C V-c e^{t / C}
\end{aligned}
$$

$Q(0)=0$ leads to $c=1$ so the final solution is $Q=C V\left(1-e^{-t / C}\right)$.
(b) As $t \rightarrow \infty, e^{-t / C} \rightarrow 0$ so that $Q(t) \rightarrow C V$ as can be seen from the above solution. It can also be seen from the original equation which has an equilibrium solution of $Q(t)=C V$. By looking at the direction field associated with this equation, it follows that $C V$ is attracting and hence that all solutions converge to $C V$ in the limit.

Consider an electric circuit containing a capacitor, resistor, and battery. The charge $Q(t)$ on the capacitor satisfies the equation $\frac{d Q}{d t}+\frac{Q}{C}=V$, where C the capacitance, and V is the constant voltage supplied by the battery.
(a) (3 pts.) Suppose that $Q(0)=Q_{0}>0$ (that is, the capacitor has charge Q_{0} when $t=0$), and that the battery is removed from the system and the circuit closed again (that is, we have set $V=0$ in the above equation). Find $Q(t)$ for any time t (that is, solve the initial value problem).
(b) (2 pts.) Assuming the situation described in part (a), find the time T at which the charge on the capacitor is $Q_{0} / 2$.

Solution: (a) The equation we are solving is $\frac{d Q}{d t}+\frac{Q}{C}=0$ or $\frac{d Q}{d t}=-\frac{Q}{C}$ which leads to

$$
\begin{aligned}
\frac{d Q}{d t} & =-\frac{Q}{C} \\
\frac{d Q}{Q} & =-\frac{d t}{C} \\
\ln |Q| & =-\frac{t}{C}+k \\
|Q| & =e^{k} e^{-t / C} \\
Q & =c e^{-t / C}
\end{aligned}
$$

$Q(0)=Q_{0}$ leads to $c=Q_{0}$ so the final solution is $Q=Q_{0} e^{-t / C}$.
(b) We must solve $Q_{0} / 2=Q_{0} e^{-T / C}$ which leads to a solution of $T=C \ln (2)$.

Consider an electric circuit containing a capacitor, resistor, and battery. Suppose that the charge $Q(t)$ on the capacitor satisfies the equation $\frac{d Q}{d t}+\frac{Q}{C}=V$, where C the capacitance, and V is the constant voltage supplied by the battery.
(a) (3 pts.) Suppose that $C=.10$ farad, and $V=10$ volts. If $Q(0)=0$, find $Q(t)$ for any time t (that is, solve the initial value problem).
(b) (2 pts.) Find the time T required for the charge Q on the capacitor to reach .50 couloumb.

Solution: (a) The equation we are solving is $\frac{d Q}{d t}+\frac{Q}{.1}=10$ or $\frac{d Q}{d t}=10-10 Q$. This equation is separable and solving it leads to

$$
\begin{aligned}
\frac{d Q}{d t} & =10(1-Q) \\
\frac{d Q}{1-Q} & =10 d t \\
-\ln |1-Q| & =10 t+k \\
|1-Q| & =e^{k} e^{-10 t} \\
Q & =1-c e^{-10 t}
\end{aligned}
$$

$Q(0)=0$ leads to $c=1$ so the final solution is $Q=1-e^{-10 t}$.
(b) We must solve $.50=1-e^{-10 T}$ which leads to a solution of $T=\ln (2) / 10$.

