MATH 214 - QUIZ 1 - SOLUTIONS

Find all equilibrium solutions to the differential equation $y^{\prime}=y(y-3)$ and indicate whether they are attracting or repelling. (Hint: It may be helpful for you to sketch a direction field for the equation, but it is not required.)
Solution: Equilibrium solutions mean that $y^{\prime}=0$. This occurs when $y=0$ and when $y=3$. If $y<0$ then $y^{\prime}=y(y-3)>0$ which means that solutions passing through points below the line $y=0$ have positive slope and hence move toward $y=0$. If $0<y<3$ then $y^{\prime}=y(y-3)<0$ which means that solutions passing through points above the line $y=0$ and below the line $y=3$ have negative slope and hence move toward $y=0$ and away from $y=3$. If $y>3$ then $y^{\prime}=y(y-3)>0$ which means that solutions passing through points above the line $y=0$ have positive slope and hence move away from $y=3$. This means that $y=0$ is attracting, and $y=3$ is repelling.

Find all equilibrium solutions to the differential equation $y^{\prime}=y(3-y)$ and indicate whether they are attracting or repelling. (Hint: It may be helpful for you to sketch a direction field for the equation, but it is not required.)
Solution: Equilibrium solutions mean that $y^{\prime}=0$. This occurs when $y=0$ and when $y=3$. If $y<0$ then $y^{\prime}=y(3-y)<0$ which means that solutions passing through points below the line $y=0$ have negative slope and hence move away from $y=0$. If $0<y<3$ then $y^{\prime}=y(3-y)>0$ which means that solutions passing through points above the line $y=0$ and below the line $y=3$ have positive slope and hence move away from $y=0$ and toward $y=3$. If $y>3$ then $y^{\prime}=y(3-y)<0$ which means that solutions passing through points above the line $y=0$ have negative slope and hence move toward $y=3$. This means that $y=0$ is repelling, and $y=3$ is attracting.

Find all equilibrium solutions to the differential equation $y^{\prime}=y(y+3)$ and indicate whether they are attracting or repelling. (Hint: It may be helpful for you to sketch a direction field for the equation, but it is not required.)
Solution: Equilibrium solutions mean that $y^{\prime}=0$. This occurs when $y=0$ and when $y=-3$. If $y<-3$ then $y^{\prime}=y(y+3)>0$ which means that solutions passing through points below the line $y=-3$ have positive slope and hence move toward $y=-3$. If $-3<y<0$ then $y^{\prime}=y(y+3)<0$ which means that solutions passing through points above the line $y=-3$ and below the line $y=0$ have negative slope and hence move toward $y=-3$ and away from $y=0$. If $y>0$ then $y^{\prime}=y(y+3)>0$ which means that solutions passing through points above the line $y=0$ have positive slope and hence move away from $y=0$. This means that $y=-3$ is attracting, and $y=0$ is repelling.

