## MATH 214 - EXAM 2 VERSION 2 - SOLUTIONS

1. (10 pts.) Find the solution of the initial value problem

$$
y^{\prime \prime}+y^{\prime}-2 y=4 t, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

## Solution:

First we need to find the general solution to the homogeneous system. The characteristic equation for this ODE is $r^{2}+r-2=0$ which factors to $(r-1)(r+$ $2)=0$ giving a solution of $r=1$ and $r=-2$. Hence the general solution is

$$
y(t)=c_{1} e^{t}+c_{2} e^{-2 t} .
$$

We will use the method of undetermined coefficients to find a particular solution, of the form $Y(t)=A t+B$. This gives $Y^{\prime}(t)=A$ and $Y^{\prime \prime}(t)=0$. Plugging into the original equation gives

$$
A-2 A t-2 B=4 t
$$

which solves to $A=-2, B=-1$. Hence the general solution is

$$
y(t)=c_{1} e^{t}+c_{2} e^{-2 t}-2 t-1 .
$$

Plugging in the initial conditions leads to the system

$$
\begin{aligned}
& 0=c_{1}+c_{2}-1 \\
& 1=c_{1}-2 c_{2}-2
\end{aligned}
$$

yielding a solution of $c_{1}=5 / 3$ and $c_{2}=-2 / 3$. Hence the final solution is

$$
y(t)=\frac{5}{3} e^{t}-\frac{2}{3} e^{-2 t}-2 t-1
$$

2. (10 pts.) Use the method of variation of parameters to find a particular solution to the differential equation

$$
4 y^{\prime \prime}-4 y^{\prime}+y=16 e^{t / 2}
$$

## Solution:

First we need to find the general solution to the homogeneous system. The characteristic equation for this ODE is $4 r^{2}-4 r+1=0$ which factors to $(2 r-1)^{2}=$ 0 giving solutions of $r=1 / 2$ of multiplicity 2 . Hence the general solution is

$$
y(t)=c_{1} e^{t / 2}+c_{2} t e^{t / 2}
$$

We will use the method of variation of parameters to find a particular solution, of the form $Y(t)=u_{1}(t) e^{t / 2}+u_{2}(t) t e^{t / 2}$. The variation of parameters formula gives the system

$$
\begin{aligned}
u_{1}^{\prime}(t) e^{t / 2}+u_{2}^{\prime}(t) t e^{t / 2} & =0 \\
\frac{1}{2} u_{1}^{\prime}(t) e^{t / 2}+u_{2}^{\prime}(t)\left(\frac{t}{2} e^{t / 2}+e^{t / 2}\right) & =4 e^{t / 2}
\end{aligned}
$$

Note that the right side of the last equation comes from putting the original equation into standard form, $y^{\prime \prime}-y+(1 / 4) y=4 e^{t / 2}$. Subtracting twice the second equation from the first gives $-2 u_{2}^{\prime}(t) e^{t / 2}=-8 e^{t / 2}$ which solve to $u_{2}^{\prime}(t)=4$ or $u_{2}(t)=4 t$. Plugging into the first equation gives $u_{1}^{\prime}(t)=-4 t$ or $u_{1}=-2 t^{2}$. Hence a particular solution is given by

$$
Y(t)=-2 t^{2} e^{t / 2}+(4 t)\left(t e^{t / 2}\right)=2 t^{2} e^{t / 2}
$$

3. ( 10 pts .) Find the general solution to the differential equation

$$
y^{\prime \prime \prime}-y^{\prime}=2 \sin (t) .
$$

## Solution:

First we need to find the general solution to the homogeneous system. The characteristic equation for this ODE is $r^{3}-r=0$ which factors to $r\left(r^{2}-1\right)=$ $r(r-1)(r+1)=0$ giving solutions of $r=0,1,-1$. Hence the general solution is

$$
y(t)=c_{1}+c_{2} e^{t}+c_{3} e^{-t}+Y(t)
$$

where $Y(t)$ is a particular solution. We will find $Y(t)$ by the method of undetermined coefficients. If $Y(t)=A \sin (t)+B \cos (t)$ then $Y^{\prime}(t)=A \cos (t)-B \sin (t)$, $Y^{\prime \prime}(t)=-A \sin (t)-B \cos (t)$, and $Y^{\prime \prime \prime}(t)=-A \cos (t)+B \sin (t)$. Plugging into the original equation gives
$-A \cos (t)+B \sin (t)-A \cos (t)+B \sin (t)=-2 A \cos (t)+2 B \sin (t)=2 \sin (t)$
which gives $A=0$ and $B=1$. Hence the general solution to the equation is

$$
y(t)=c_{1}+c_{2} e^{t}+c_{3} e^{-t}+\cos (t) .
$$

4. (10 pts.) Find the general solution to the homogeneous differential equation

$$
y^{(4)}+2 y^{\prime \prime}+y=0 .
$$

## Solution:

The characteristic equation for this ODE is $r^{4}+2 r^{2}+1=0$ which factors to $\left(r^{2}+1\right)^{2}=0$ giving solutions of $r= \pm i$ each of multiplicity 2 . Hence the general solution is

$$
\left.y(t)=c_{1} \cos (t)+c_{2} \sin (t)+c_{3} t \cos (t)+c_{4} t \sin 9 t\right) .
$$

