MATH 214 - EXAM 2 VERSION 1 - SOLUTIONS

1. (10 pts.) Find the solution of the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}+y=t e^{2 t}, \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

Solution:

First we need to find the general solution to the homogeneous system. The characteristic equation for this ODE is $r^{2}-2 r+1=0$ which factors to $(r-1)^{2}=0$ giving a solution of $r=1$ of multiplicity 2 . Hence the general solution is

$$
y(t)=c_{1} e^{t}+c_{2} t e^{t} .
$$

We will use the method of undetermined coefficients to find a particular solution, of the form $Y(t)=A t e^{2 t}+B e^{2 t}$. This gives $Y^{\prime}(t)=2 A t e^{2 t}+A e^{2 t}+2 B e^{2 t}$ and $Y^{\prime \prime}(t)=4 A t e^{2 t}+4 A e^{2 t}+4 B e^{2 t}$. Plugging into the original equation gives

$$
4 A t e^{2 t}+4 A e^{2 t}+4 B e^{2 t}-4 A t e^{2 t}-2 A e^{2 t}-4 B e^{2 t}+A t e^{2 t}+B e^{2 t}=t e^{2 t} .
$$

Gathering like terms, this leads to

$$
A t e^{2 t}+(2 A+B) e^{2 t}=t e^{2 t}
$$

Which solves to $A=1, B=-2$. Hence the general solution is

$$
y(t)=c_{1} e^{t}+c_{2} t e^{t}+t e^{2 t}-2 e^{2 t} .
$$

Plugging in the initial conditions leads to the system

$$
\begin{aligned}
& 1=c_{1}-2 \\
& 0=c_{1}+c_{2}+1-4
\end{aligned}
$$

yielding a solution of $c_{1}=3$ and $c_{2}=0$. Hence the final solution is

$$
y(t)=3 e^{t}+t e^{2 t}-2 e^{2 t} .
$$

2. (10 pts.) Use the method of variation of parameters to find a particular solution to the differential equation

$$
y^{\prime \prime}-y^{\prime}-2 y=2 e^{-t}
$$

Solution:

First we need to find the general solution to the homogeneous system. The characteristic equation for this ODE is $r^{2}-r-2=0$ which factors to $(r+1)(r-$ $2)=0$ giving solutions of $r=-1$ and $r=2$. Hence the general solution is

$$
y(t)=c_{1} e^{-t}+c_{2} e^{2 t} .
$$

We will use the method of variation of parameters to find a particular solution, of the form $Y(t)=u_{1}(t) e^{-t}+u_{2}(t) e^{2 t}$. The variation of parameters formula gives the system

$$
\begin{aligned}
u_{1}^{\prime}(t) e^{-t}+u_{2}^{\prime}(t) e^{2 t} & =0 \\
-u_{1}^{\prime}(t) e^{-t}+2 u_{2}^{\prime}(t) e^{2 t} & =2 e^{-t}
\end{aligned}
$$

Adding the equations gives $3 u_{2}^{\prime}(t) e^{2 t}=2 e^{-t}$ which solve to $u_{2}^{\prime}(t)=(2 / 3) e^{-3 t}$ or $u_{2}(t)=-(2 / 9) e^{-3 t}$. Plugging into the first equation gives $u_{1}^{\prime}(t)=-2 / 3$ or $u_{1}=-(2 / 3) t$. Hence a particular solution is given by

$$
Y(t)=-\frac{2}{3} t e^{-t}-\frac{2}{9} e^{-t} .
$$

The second term in that sum could be omitted since it is a solution to the homogeneous equation.
3. (10 pts.) Find the general solution to the differential equation

$$
y^{\prime \prime \prime}-y^{\prime \prime}=6 t .
$$

Solution:

First we need to find the general solution to the homogeneous system. The characteristic equation for this ODE is $r^{3}-r^{2}=0$ which factors to $r^{2}(r-1)=0$ giving solutions of $r=0$ of multiplicity 2 and $r=1$. Hence the general solution is

$$
y(t)=c_{1}+c_{2} t+c_{3} e^{t}+Y(t)
$$

where $Y(t)$ is a particular solution. We will find $Y(t)$ by the method of undetermined coefficients. If $Y(t)=A t^{3}+B t^{2}$ then $Y^{\prime}(t)=3 A t^{2}+2 B t, Y^{\prime \prime}(t)=6 A t+2 B$, and $Y^{\prime \prime \prime}(t)=6 A$. Plugging into the original equation gives

$$
6 A-6 A t+2 B=6 t
$$

which gives $A=-1$ and $B=3$. Hence the general solution to the equation is

$$
y(t)=c_{1}+c_{2} t+c_{3} e^{t}-t^{3}+3 t^{2} .
$$

4. (10 pts.) Find the general solution to the differential equation

$$
y^{(4)}-5 y^{\prime \prime}+4 y=0 .
$$

Solution:

The characteristic equation for this ODE is $r^{4}-5 r^{2}+4=0$ which factors to $\left(r^{2}-1\right)\left(r^{2}-4\right)=0$ and again to $(r-1)(r+1)(r-2)(r+2)=0$ giving solutions of $r=1,-1,2,-2$. Hence the general solution is

$$
y(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} e^{2 t}+c_{4} e^{-2 t} .
$$

