1. (5 pts. each) Consider the initial value problem $y^{\prime}=y^{2}(y-2), y(0)=y_{0}$.
(a) Find all equilibrium solutions to this equation. Do not attempt to solve the IVP.
(b) Describe the long term behavior (that is, the behavior as $t \rightarrow \infty$) of the solutions to the IVP for various values of y_{0}. Give as complete a description as possible. You may sketch a direction field to help you solve this problem but it is not necessary.

Solution:

(a) Equilibrium solutions are $y=0$ and $y=2$.
(b) If $y_{0}<0$ then $y^{\prime}<0$ so that as $t \rightarrow \infty, y(t) \rightarrow-\infty$. If $0<y_{0}<2$ then $y^{\prime}<0$ so that as $t \rightarrow \infty, y(t) \rightarrow 0$. If $2<y_{0}$ then $y^{\prime}>0$ so that as $t \rightarrow \infty$, $y(t) \rightarrow \infty$.
2. (5 pts.) A bathtub initially contains 30 gallons of clean water. Salt water with a concentration of 20 grams of salt per gallon is poured into the tub at a rate of 4 gallons per minute and the drain is opened to drain the tub at the same rate. Set up and solve an initial value problem giving $Q(t)$, the amount of salt in the tub at time t.

Solution:

The correct equation has the form $Q^{\prime}(t)=$ rate in - rate out. Since the concentration of the solution coming in is 20 grams per gallon and the rate is 4 gallons per minute, salt is coming in to the tub at a rate of $(20)(4)=80$ grams per minute. Since the concentration of the solution flowing out is $Q(t) / 30$ grams per gallon and the rate is 4 gallons per minute, salt is flowing out of the tub at a rate of $(4)(Q(t) / 30)=(2 / 15) Q(t)$ grams per minute. Hence we are solving the equation

$$
Q^{\prime}(t)=80-\frac{2}{15} Q(t) .
$$

Using the integrating factor $\mu(t)=e^{(2 / 15) t}$ we have

$$
\begin{aligned}
Q^{\prime}(t)+\frac{2}{15} Q(t) & =80 \\
\left(e^{(2 / 15) t} Q\right)^{\prime} & =80 e^{(2 / 15) t} \\
e^{(2 / 15) t} Q(t) & =600 e^{(2 / 15) t}+c \\
Q(t) & =600+c e^{-(2 / 15) t}
\end{aligned}
$$

Since $Q(0)=0$ this gives $c=-600$ so that the final solution is

$$
Q(t)=600-600 e^{-(2 / 15) t}=600\left(1-e^{-(2 / 15) t}\right)
$$

3. (5 pts.) Suppose that the field mouse population, $p(t)$, in a certain field satisfies the differential equation $\frac{d p}{d t}=p-800$, where t is measured in years. If the initial population $p(0)=600$, solve the initial value problem and find the time T at which the population becomes extinct.

Solution:

Solving the equation using the integrating factor $\mu(t)=e^{-t}$ we have

$$
\begin{aligned}
\frac{d p}{d t}-p & =-800 \\
\left(e^{-t} p\right)^{\prime} & =-800 e^{-t} \\
e^{-t} p(t) & =800 e^{-t}+c \\
p(t) & =800+c e^{t}
\end{aligned}
$$

Since $p(0)=600$ this gives $c=-200$ so that the final solution is

$$
p(t)=800-200 e^{t} .
$$

The population will reach zero when T satisfies $p(T)=0$, or equivalently when $800-200 e^{T}=0$ which leads to a solution of $T=\ln (4)$.
4. (5 pts. each) Solve each of the following problems.
(a) $y \frac{d y}{d t}=t^{2}, y(0)=2$.
(b) $\frac{d y}{d t}-3 y=6 e^{t}, y(0)=-2$.
(c) $\left(3 x^{2}+2 x y\right)+\left(2 y+x^{2}\right) y^{\prime}=0$. (Hint: This equation is exact.)

Solution:

(a) This equation is separable and we have

$$
\begin{aligned}
y \frac{d y}{d t} & =t^{2} \\
y d y & =t^{2} d t \\
\frac{1}{2} y^{2} & =\frac{1}{3} t^{3}+c
\end{aligned}
$$

The initial condition $y(0)=2$ leads to the equation $(1 / 2)\left(2^{2}\right)=(1 / 3)(0)+c$ or equivalently $c=2$. Hence the final solution is given by the equation

$$
\frac{1}{2} y^{2}=\frac{1}{3} t^{3}+2
$$

(b) Solving the equation using the integrating factor $\mu(t)=e^{-3 t}$ we have

$$
\begin{aligned}
\frac{d y}{d t}-3 y & =6 e^{t} \\
\left(e^{-3 t} y\right)^{\prime} & =6 e^{t} e^{-3 t} \\
\left(e^{-3 t} y\right)^{\prime} & =6 e^{-2 t} \\
e^{-3 t} y(t) & =-3 e^{-2 t}+c \\
y(t) & =-3 e^{t}+c e^{3 t} .
\end{aligned}
$$

The initial condition $y(0)=-2$ leads to the equation $-2=-3+c$ or $c=1$. Hence the final solution is

$$
y(t)=-3 e^{t}+e^{3 t}
$$

(c) We are looking for a function $\Psi(x, y)$ such that $\Psi_{x}=3 x^{2}+2 x y$ and $\Psi_{y}=$ $2 y+x^{2}$. This leads to

$$
\begin{aligned}
\Psi_{x} & =3 x^{2}+2 x y \\
\Psi & =x^{3}+x^{2} y+g(y) \\
\Psi_{y} & =x^{2}+g^{\prime}(y) .
\end{aligned}
$$

This leads to

$$
\begin{aligned}
x^{2}+g^{\prime}(y) & =2 y+x^{2} \\
g^{\prime}(y) & =2 y \\
g(y) & =y^{2} .
\end{aligned}
$$

Therefore $\Psi=x^{3}+x^{2} y+y^{2}$ and the solution to the ODE is given by

$$
x^{3}+x^{2} y+y^{2}=c .
$$

5. (5 pts.) Find an interval of t on which the solution to the initial value problem $(4-t) y^{\prime}+2 t y=3 t^{2}, y(-3)=1$ is certain to exist. Do not solve the IVP!

Solution:

Putting the equation into standard form gives

$$
y^{\prime}+\frac{2 t}{4-t} y=\frac{3 t^{2}}{4-t}
$$

The coefficient functions $p(t)=\frac{2 t}{4-t}$ and $q(t)=\frac{3 t^{2}}{4-t}$ are continuous on the intervals $(-\infty, 4)$ and $(4, \infty)$. Since the initial condition $y(-3)=1$, has t_{0} $3 \in(-\infty, 4)$, we can guarantee that the solution exists on the interval $(-\infty, 4)$.

