Laplace Transforms

Forcing functions
- second order linear equations w/const coeff&
 model many kinds of oscillatory motion
- mass + spring systems,
- electrical circuits

Mass + Spring systems
\[m \dddot{u} + \ddot{u} + ku = F \]

A. Unforced systems,

1. Undamped \(\delta = 0 \).
 oscillatory motion \(u(t) = R \cos(\omega_0 t - \theta) \)
 \(\omega_0 \) - natural frequency \(\omega_0 = \sqrt{\frac{k}{m}} \)
 \(R, \theta \) depend on initial conditions.

2. Damping \(\delta > 0 \).
 a. Small damping \(0 < \delta < 2\sqrt{\frac{k}{m}} \)
damped oscillations
 b. Critical or overdamped \(\delta \geq 2\sqrt{\frac{k}{m}} \)
decaying solutions - no oscillation
B. Forced systems \(F \neq 0 \)

1. Undamped \(\delta = 0 \)

 a. \(\omega = \omega_0 \rightarrow \text{resonance} \) and \(u(t) \rightarrow \infty \) as \(t \rightarrow \infty \).

 b. \(\omega \neq \omega_0 \rightarrow \text{beat} \)

2. Damped \(\delta > 0 \)

 \[m u'' + \delta u' + ku = F_0 \cos \omega t \quad \omega \neq \omega_0 = \sqrt{\frac{F_0}{m}} \]

 \[u(t) = R_1 e^{-\delta t/2m} \cos (\omega t - S_1) \quad R_1, S_1 \text{ depend on initial cond.} \]

 \[\uparrow \text{quasi-frequency,} \]

 \[+ (A \cos \omega t + B \sin \omega t) \]

 (transient solution)

 dies out as \(t \rightarrow \infty \)

 \[\begin{align*}
 R_2 \cos (\omega t - S_2) & \leftarrow \text{persists} \\
 \uparrow \text{How does } R_2 \text{ depend on } \omega \text{ and } F_0? \end{align*} \]

 (steady-state solution)
After some work:

\[R_2 = \left(\frac{E_0}{k} \right) \left[\frac{1}{(1 - \left(\frac{w}{w_0} \right)^2)^2 + \left(\frac{\gamma^2}{\omega_0^2} \right) \left(\frac{w}{w_0} \right)^2} \right]^{1/2} \]

If \(\frac{w}{w_0} \) is very small then \([-] \times 1\)
and \(R_2 \approx \frac{E_0}{k} \cdot \frac{w}{w_0} \) small means forcing has low frequency (slow oscillations).

If \(\frac{w}{w_0} \approx 1 \) then \(R_2 \approx \frac{E_0}{k} \cdot \frac{\sqrt{\gamma k}}{\omega_0} \)
so oscillations are large if \(\gamma \) is small i.e. small damping.

If \(\frac{w}{w_0} \) very large then forcing has very fast oscillations and \([-] \) is very small so \(R_2 \) is very small.
6.4 Discontinuous Forcing Functions

We have looked at periodic forcing. What would discontinuous forcing look like?

\[mu'' + ku + bu = g(t) \]

\[u(0) = 1, \quad u'(0) = 0 \]

Discontinuous forcing is like suddenly increasing gravity (or changing the mass, or turning on floor magnet, etc.)

1) Oscillatory motion for \(0 \leq t < c \)

Solving \(mu'' + ku = 0 \), \(u(0) = 1 \), \(u'(0) = 0 \)

\[y_A(t) = R \cos (w_0 t - \delta) = \cos (w_0 t) \]

\[R = 1 \]

\[\delta = 0 \]

2) at \(t = c \) we are solving

\(mu'' + ku = 1 \) with new initial conditions

\[u(c) = y_A(c) \quad u'(c) = y_A'(c) \]
What will solution look like?

\[y_{B}(t) = R_1 \cos(\omega t - \delta) + \frac{1}{k} \]

\[\text{homogeneous solution} \]
\[\text{particular solution} \]

What happens at \(t = c \)?
- A jump? NO
- A corner? NO
- A discontinuous second derivative? YES.

Electrical circuit

\[LQ'' + RQ' + \frac{1}{C}Q = E \]

- \(L \)-inductor
- \(C \)-capacitor
\[E(t) : \quad \begin{array}{c}
\frac{d^2 y}{dt^2} + y' + 2y = u_5(t) - u_{20}(t) = 9(t) \\
0 \quad 5 \quad 20
\end{array} \]

\[y(0) = 0, \quad y'(0) = 0 \]

This is like flipping on a switch.

Other examples:

Impulsive force:

Ramp loading:

\[\begin{array}{c}
\frac{d^2 y}{dt^2} + y' + 2y = u_5(t) - u_{20}(t) = 9(t) \\
0 \quad 5 \quad 20
\end{array} \]
\[2 \mathfrak{L} y' + \mathfrak{L} y^2 + 2 \mathfrak{L} y^3 = \mathfrak{L} u_1 - \mathfrak{L} u_2 \]
\[2 \left(s^2 \mathfrak{L} y - s y(0) - y(0) \right) + s \mathfrak{L} y^2 - y(0) + 2 \mathfrak{L} y^3 \]
\[= \mathfrak{L} u_1 - \mathfrak{L} u_2 \]
\[(2s^2+s+2) \mathfrak{L} y = \frac{1}{s} (e^{-5s} - e^{-20s}) \]
\[\mathfrak{L} y^3 = \frac{e^{-5s} - e^{-20s}}{s (2s^2+s+2)} \]

\[
\begin{bmatrix}
1 \\
\frac{1}{s (2s^2+s+2)} \\
\end{bmatrix} = \frac{A}{s} + \frac{B s + C}{2s^2+s+2} \]

\[
= \frac{A (2s^2+s+2) + s (B s + C)}{s (2s^2+s+2)} \]

\[A (2s^2+s+2) + s (B s + C) = 1 \quad s = 0 \]

\[2A = 1 \rightarrow A = \frac{1}{2} \]

\[\frac{d}{ds} \left(A (4s+1) + 2Bs + C \right) = 0 \quad s = 0 \]

\[A + C = 0 \rightarrow C = -\frac{1}{2} \]

\[\frac{d^2}{ds^2} \left(4A + 2B = 0 \right) \rightarrow B = -\frac{1}{2} \]
\[f(t) = (e^{-5s} - e^{-20s}) \left(\frac{1}{2} s - \frac{s+ \frac{1}{2}}{2s^2 + \frac{1}{2} s + 1} \right) \]

\[= \frac{1}{2} (e^{-5s} - e^{-20s}) \left(\frac{s}{s} - \frac{s+ \frac{1}{4}}{(s+ \frac{1}{4})^2 + \frac{15}{16}} \right) \]

\[= \frac{1}{2} (e^{-5s} - e^{-20s}) \left(\frac{1}{s} - \frac{s+ \frac{1}{4}}{(s+ \frac{1}{4})^2 + \frac{15}{16}} - \frac{1}{4} \frac{1}{(s+ \frac{1}{4})^2 + \frac{15}{16}} \right) \]

\[g^{-1}(s) = 1 - e^{-\frac{t}{4}} \cos \left(\frac{\sqrt{15}}{4} t \right) \]

\[- \frac{1}{4} \frac{\sqrt{15}}{\sqrt{15}} e^{-\frac{t}{4}} \sin \left(\frac{\sqrt{15}}{4} t \right) \]

\[= h(t) \]

\[L_y(t) = \frac{1}{2} \left(e^{-5s} - e^{-20s} \right) h(t) \]