Answer each of the following questions. Show all work, as partial credit may be given. This exam is out of a total of 80 points.

1. (8 pts.) Find \(f_x, f_y, f_{yy}, \) and \(f_{xy} \) for the function \(f(x, y) = x \sin(xy) \).

2. (8 pts.) Find \(f_{yzy} \) when \(f(x, y, z) = y^2 z^2 + x^3 y + \frac{xy}{z} \).

3. (8 pts. each) Let \(f(x, y) = x^2 y^2 - 2x^3 y + 2x \).
 (a) Find \(\nabla f \).
 (b) Find the directional derivative of \(f \) at the point \((1, 2)\) and in the direction \(\mathbf{v} = i + 3j \).
 (c) Find the maximum rate of change of \(f \) at the point \((1, 2)\), and the direction in which \(f \) changes most rapidly at the point \((1, 2)\). (Note: Direction should be in the form of a unit vector.)
 (d) Find the linearization of the function \(f(x, y) \) at the point \((1, 2)\).
 (e) Use differentials to estimate the change in \(f \) when the point \((1, 2)\) moves to the point \((1.1, 2.3)\).

4. (12 pts.) Find all critical points of the function \(f(x, y) = 4xy - x^4 - y^4 \) and identify each as a local maximum, local minimum, or saddle point. (Hint: There are three critical points.)

5. (6 pts.) Evaluate the iterated integral \(\int_0^1 \int_x^3 (x + y) \, dy \, dx \).

6. (6 pts.) Reverse the order of integration for the integral \(\int_0^2 \int_0^{x^2} x^2 \, dy \, dx \). Do not evaluate. (Hint: It will be helpful to sketch the region before reversing the order.)