No class Monday
Exam solutions will be posted
Exams returned Tuesday
MAPLE #1 is posted online

7.2 Exponential growth/decay

Idea: Exp growth/decay are good models for many situations

1. Models well very rapid growth
2. Characterized by a doubling time (for growth models) or half-life (for decay models).

\[y(t) = \text{population or amount, etc. at time } t. \]

Then there is a fixed value \(T \) so that

\[y(t+T) = 2y(t) \quad \text{(growth)} \]
\[y(t+T) = \frac{1}{2} y(t) \quad \text{(decay)} \]

3. The rate of change in \(y \), \(y'(t) \)
 is proportional to \(y(t) \)
Suppose \(y'(t) \) proportional to \(y(t) \)

\[
y'(t) = ky(t)
\]

\[
\frac{y'(t)}{y(t)} = k
\]

\[
\int \frac{y'(t)}{y(t)} \, dt = \int k \, dt
\]

\[
\ln y(t) = kt + c
\]

\[
y(t) = e^{kt+c} = e^{kt}e^c
\]

\[
y(t) = y_0 e^{kt}
\]

\(y_0 = y(0) \) = initial value

\[
\text{Call this } y_0
\]

\(k \): growth/decay constant

\(k > 0 \) growth

\(k < 0 \) decay
y(t) = pop. of bacteria t hours after initial.

Want y(0) = y_0.

Know y(t) = y_0 e^kt for some k > 0, y_0.

y(3) = 10000
y(5) = 40000

Two ways to solve:

1. Pop has increased by factor of 4 between t = 3 and t = 5. In fact, any 2 hr time period increases pop. by factor of 4.

Pop doubles twice in 2 hrs so will double once in one hour.

y(4) = 2y(3) = 20000
y(2) = 5000
y(1) = 2500
y(0) = 1250

-3-
2. \(y(t) = y_0 e^{kt} \) \text{ Find } k + y_0 \\

\(y(3) = 10000 \) \\
\(y(5) = 40000 \) \\
\(y_0 e^{k \cdot 3} = 10000 \) \\
\(y_0 e^{k \cdot 5} = 40000 \) \\
\(4 y_0 e^{3k} = y_0 e^{5k} \) \\
\(4 = e^{5k} e^{-3k} = e^{2k} \) \\
\(\ln(4) = 2k \) \quad \therefore \quad k = \frac{\ln(4)}{2} = \frac{1}{2} \ln(4) \) \\
\(= \ln(4^{1/2}) = \ln(2) \) \\

\(y(t) = y_0 e^{\ln(2)t} \) \\

\text{Find } y_0: \quad 10000 = y_0 e^{3 \ln(2)} = y_0 e^{\ln(8)} = y_0 e \) \\
\(y_0 = \frac{10000}{8} = 1250 \)
Example 1, p510

\[y(t) = y_0 e^{kt} \quad k < 0 \]

\[y(0) = y_0 \]

\[y(1) = 0.8 y_0 \]

\[y(2) = (0.8)^2 y_0 = 0.64 y_0 \]

\[\text{etc...} \]

\[y_0 = 10000 \quad (\text{given}) \]

Find \(k \).

\[y(1) = y_0 e^{k} \quad y(1) = 0.8 y_0 \]

\[0.8 y_0 = y_0 e^{k} \]

\[0.8 = e^{k} \quad k = \ln(0.8) \]

\[y(t) = 10000 e^{\ln(0.8) t} \]

\[\approx -0.223 \]

Find \(t \) so that \(y(t) = 1000 \)

\[1000 = 10000 e^{\ln(0.8) t} \]

\[e^{\ln(0.8) t} = 0.1 \]

\[\ln(0.8) t = \ln(0.1) \]

\[t = \frac{\ln(0.1)}{\ln(0.8)} \approx 10.3 \text{ yrs.} \]
(a) \[y(t) = y_0 e^{kt} \]
\[y_0 = 10000 \text{ (still)} \]
\[\text{be different} \]

\[y(1) = .75y_0 \]
\[y(1) = y_0 e^k \]
\[.75y_0 = y_0 e^k \]
\[e^k = .75 \]
\[k_0 = \ln(.75) \approx -.287 \]

When will \(y(t) = 1000 \) ?

\[y(t) = 10000 e^{\ln(.75)t} \]
\[e^{\ln(.75)t} = .1 \]
\[\ln(.75)t = \ln(.1) \]
\[t = \frac{\ln(.1)}{\ln(.75)} \approx 8.0 \text{ yrs.} \]
\#6 515 \[\frac{dV}{dt} = -\frac{1}{40} \ V \]

\[V(t) = V_0 \ e^{(-\frac{1}{40})t} \]

Solve: \[V(t) = 0.1 \ V_0 \]

\[e^{(-\frac{1}{40})t} = 0.1 \]

\[-\frac{1}{40}t = \ln(0.1) \]

\[t = -40 \ \ln(0.1) \approx 92.1 \ \text{sec} \]
2.4 Hyperbolic Functions

Idea: Will allow us to do more integrals.

Hyperbolic sine: \(\sinh(x) = \frac{e^x - e^{-x}}{2} \)

Hyperbolic cosine: \(\cosh(x) = \frac{e^x + e^{-x}}{2} \)

Hyperbolic tangent: \(\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \)

etc...

Basic properties:

\(\sinh(x) : \sinh(-x) = \frac{e^{-x} - e^x}{2} = -(\frac{e^x - e^{-x}}{2}) = -\sinh(x) \quad \text{ODD} \)

\(\cosh(x) : \cosh(-x) = \frac{e^{-x} + e^x}{2} = \cosh(x) \quad \text{EVEN} \)

\(\sinh(x) + \cosh(x) = e^x \)

\(\text{odd part of } e^x \quad \text{even part of } e^x \)
Graphs:
\[\sinh(x) = \frac{e^x - e^{-x}}{2} \]
\[\sinh(0) = 0 \]

\[\cosh(x) = \frac{e^x + e^{-x}}{2} \]
\[\cosh(0) = 1 \]

\[\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]
\[\tanh(0) = 0 \]
Identities:
\[\sinh(x) + \cosh(x) = e^x \]
\[\cosh^2(x) - \sinh^2(x) = 1 \]
\[\tanh^2(x) = 1 - \text{sech}^2(x) \]
\[\coth^2(x) = 1 + \text{csch}^2(x) \]

Derivatives:
\[\frac{d}{dx} \sinh(x) = \frac{d}{dx} \left(\frac{e^x - e^{-x}}{2} \right) = \frac{e^x - (-e^{-x})}{2} = \frac{e^x + e^{-x}}{2} = \cosh(x) \]
\[\frac{d}{dx} \cosh(x) = \frac{d}{dx} \left(\frac{e^x + e^{-x}}{2} \right) = \frac{e^x - e^{-x}}{2} = \sinh(x) \]

etc...
Inverse functions

\[y = f(x) \]

If \(f \) is one-to-one
the function \(f^{-1} \) exists and is defined by:
\[f^{-1}(x) = y \iff f(y) = x \]

Fact: if \((x, y) \) is on graph of \(f \) then \((y, x) \) is on graph of \(f^{-1}(x) \)
\[
\sinh^{-1}(x)\\
\sinh^{-1}(y) = y \iff \sinh(y) = x
\]

In fact you can solve \(\sinh(x) = y \) for \(x \) in terms of \(y \).

\[
y = \frac{e^x - e^{-x}}{2} \quad \longrightarrow \quad x = \ln(y + \sqrt{y^2 + 1}) = \sinh^{-1}(y).
\]

\[
\cosh^{-1}(x)\\
\cosh^{-1}(x) = y \iff x = 1 + \sqrt{x^2 - 1}, \quad x \geq 1
\]

\[
\text{NOT one-to-one}
\]
\[
\frac{d}{dx} \sinh^{-1}(x) = \frac{1}{\cosh(\sinh^{-1}(x))} \\
= \frac{1}{\sqrt{1+x^2}}
\]

Similarly,

\[
\frac{d}{dx} \cosh^{-1}(x) = \frac{1}{\sqrt{x^2-1}}
\]

\[
\frac{d}{dx} \tanh^{-1}(x) = \frac{1}{1-x^2}
\]