MATH 108 - 25 APRIL 2011- EXAM 3

Answer each of the following questions. Show all work, as partial credit may be given. This exam is counted out of a total of 100 points.

1. (10 pts.) A cylindrical metal can is to have a surface area of 24π square inches. Find the dimensions (height and radius) of such a can that has maximum volume. (Hint: The volume V of a cylinder of height h and radius r is $V=\pi r^{2} h$ and its surface area S is $S=2 \pi r h+2 \pi r^{2}$.)
2. (8 pts . each) Solve each of the following equations for x.
(a) $4^{2 x-x^{2}}=1$.
(b) $\log _{9}(4 x-1)=2$.
(c) $5=1+4 e^{-6 x}$.
3. (8 pts. each) Compute the first derivative of the following functions.
(a) $f(x)=\ln \left(2 x^{3}-5 x\right)$.
(b) $h(x)=\frac{e^{-x^{2}}}{x^{2}}$.
(c) $g(t)=t^{3} \ln \left(t^{2}+1\right)$.
4. (10 pts. each) The population P (in thousands of bacteria) of a certain bacterial culture t days after the culture is started is given by $P(t)=\frac{25}{1+2 e^{-t}}$.
(a) What is the initial population of bacteria?
(b) When does the population reach 20 thousand bacteria (that is, when does $P(t)=20$)?
(c) What is the population of bacteria in the long run, that is, as $t \rightarrow \infty$?
5. (10 pts. each) Let $f(x)=e^{3 x-x^{3}}$.
(a) Find all critical points (that is, both x and y coordinates) for $f(x)$.
(b) Find the intervals of increase and decrease for $f(x)$ and identify all critical points you found in part (a) as relative maxima, relative minima, or neither.
