MATH 108 – 21 FEBRUARY 2011– EXAM 1

Answer each of the following questions. Show all work, as partial credit may be given.

1. (10 pts.) A cylindrical soda can has a volume of 7π cubic inches. Express the surface area of the can as a function of its radius. (Hint: The formula for the volume of a cylinder of radius r and height h is $V = \pi r^2 h$, and the surface area of a closed cylinder is $S = 2\pi r h + 2\pi r^2$.)

2. (10 pts. each) Compute each of the following limits.

(a)
$$\lim_{x \to 3} \frac{9 - x^2}{x - 3}$$

(b)
$$\lim_{x \to \infty} \frac{2x + 3}{x^2 + 1}$$

3. Let
$$f(x) = \begin{cases} \frac{x^2 + 1}{x + 1} & \text{if } x < 1\\ 2 - x^3 & \text{if } x \ge 1 \end{cases}$$
.

- (a) (10 pts.) Compute the one-sided limits $\lim_{x \to 1^+} f(x)$ and $\lim_{x \to 1^-} f(x)$.
- (b) (5 pts.) Is f(x) continuous at x = 1? Why or why not?

4. (10 pts.) Evaluate $\lim_{x\to 2^+} \frac{x^2+1}{2x-4}$ by indicating whether it is $+\infty$ or $-\infty$.

5. (10 pts.) Find the equation of the tangent line to the graph of the function $f(x) = 2 - x^3$ at x = 1.

6. (10 pts.) After x weeks, the number of people using a new rapid transit system was approximately $N(x) = 6x^3 + 500x + 8000$. At what rate was the use of the system changing after 8 weeks? Is the usage increasing or decreasing at this time?

7. (10 pts. each) Evaluate the following derivatives using whatever method you like. Be sure to simplify your answer.

(a) $f(x) = (2+5x)^{1/2}$

(b)
$$y = x^2(2x+3)^5$$

(c)
$$g(t) = \frac{x}{2-x}$$
.