MATH 108 - 21 FEBRUARY 2011- EXAM 1

Answer each of the following questions. Show all work, as partial credit may be given.

1. (10 pts.) A cylindrical soda can has a volume of 7π cubic inches. Express the surface area of the can as a function of its radius. (Hint: The formula for the volume of a cylinder of radius r and height h is $V=\pi r^{2} h$, and the surface area of a closed cylinder is $S=2 \pi r h+2 \pi r^{2}$.)
2. (10 pts. each) Compute each of the following limits.
(a) $\lim _{x \rightarrow 3} \frac{9-x^{2}}{x-3}$
(b) $\lim _{x \rightarrow \infty} \frac{2 x+3}{x^{2}+1}$
3. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}+1}{x+1} & \text { if } x<1 \\ 2-x^{3} & \text { if } x \geq 1\end{array}\right.$.
(a) (10 pts.) Compute the one-sided limits $\lim _{x \rightarrow 1^{+}} f(x)$ and $\lim _{x \rightarrow 1^{-}} f(x)$.
(b) (5 pts.) Is $f(x)$ continuous at $x=1$? Why or why not?
4. (10 pts.) Evaluate $\lim _{x \rightarrow 2^{+}} \frac{x^{2}+1}{2 x-4}$ by indicating whether it is $+\infty$ or $-\infty$.
5. (10 pts.) Find the equation of the tangent line to the graph of the function $f(x)=2-x^{3}$ at $x=1$.
6. (10 pts.) After x weeks, the number of people using a new rapid transit system was approximately $N(x)=6 x^{3}+500 x+8000$. At what rate was the use of the system changing after 8 weeks? Is the usage increasing or decreasing at this time?
7. (10 pts. each) Evaluate the following derivatives using whatever method you like. Be sure to simplify your answer.
(a) $f(x)=(2+5 x)^{1 / 2}$
(b) $y=x^{2}(2 x+3)^{5}$
(c) $g(t)=\frac{x}{2-x}$.
