5.3. The Definite Integral and the Fundamental Theorem of Calculus

Area under a Curve
Let $f(x)$ be continuous and $f(x) \geq 0$ on the interval $a \leq x \leq b$.
Then the region under the curve $y=f(x)$ over the interval $a \leq x \leq b$ has area

$$
A=\lim _{n \rightarrow+\infty}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right] \Delta x
$$

where x_{j} is the left endpoint of the j th subinterval if the interval $a \leq x \leq b$ is divided into n equal parts, each of length
$\Delta x=\frac{b-a}{n}$.

The Definite Integral

Let $f(x)$ be a continuous function on $a \leq x \leq b$. Subdivide the interval $a \leq x \leq b$ in n equal parts, each of width $\Delta x=\frac{b-a}{n}$, and choose a number x_{k} from the k th subinterval. Form the sum

$$
\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right] \Delta x
$$

called the Riemann Sum.
Then the definite integral of f on the interval $a \leq x \leq b$, denoted by $\int_{a}^{b} f(x) d x$, is the limit of the Riemann sum as $n \rightarrow+\infty$; that is,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow+\infty}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right] \Delta x
$$

The Definite Integral

The Fundamental Theorem of Calculus
If the function $f(x)$ is continuous on the interval $a \leq x \leq b$, then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

where $F(x)$ is any antiderivative of $f(x)$ on $a \leq x \leq b$.
Example (\#4)
Evaluate $\int_{1}^{4}(5-2 t) d t$.

The Definite Integral

Area as a Definite Integral
If $f(x)$ is continuous and $f \geq 0$ on the interval $a \leq x \leq b$, then the region under the curve $y=f(x)$ over the interval $a \leq x \leq b$ has area given by the definite integral $\int_{a}^{b} f(x) d x$.
Example (\#38)
Find the area of the region that lies under the curve $y=\sqrt{x}(x+1)$ over the interval $0 \leq x \leq 4$.

Rules of Definite Integrals

Let f and g be continuous on $a \leq x \leq b$. Then

- The constant multiple rule:

$$
\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x \quad \text { for constant } k
$$

- The sum rule:

$$
\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

- The difference rule:

$$
\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
$$

Rules of Definite Integrals

Let f and g be continuous on $a \leq x \leq b$. Then

- $\int_{a}^{a} f(x) d x=0$
- $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
- The subdivision rule:

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Rules of Definite Integrals

Example (\#36)

Let $f(x)$ and $g(x)$ be continuous on $-3 \leq x \leq 1$ and satisfy

$$
\int_{-3}^{1} f(x) d x=0 \quad \int_{-3}^{1} g(x) d x=4
$$

Evaluate $\int_{-3}^{1}[2 f(x)+3 g(x)] d x$

Rules of Definite Integrals

Example (\#32)

Let $g(x)$ be continuous on $-3 \leq x \leq 2$ and satisfies

$$
\int_{-3}^{2} g(x) d x=-2 \quad \int_{-3}^{1} g(x) d x=4
$$

Evaluate $\int_{1}^{2} g(x) d x$

