5.3. The Definite Integral and the Fundamental Theorem of Calculus

Area under a Curve

Let f(x) be continuous and $f(x) \ge 0$ on the interval $a \le x \le b$. Then the region under the curve y = f(x) over the interval $a \le x \le b$ has area

$$A = \lim_{n \to +\infty} [f(x_1) + f(x_2) + \cdots + f(x_n)] \Delta x$$

where x_j is the left endpoint of the *j*th subinterval if the interval $a \le x \le b$ is divided into *n* equal parts, each of length $\Delta x = \frac{b-a}{n}$.

The Definite Integral

Let f(x) be a continuous function on $a \le x \le b$. Subdivide the interval $a \le x \le b$ in *n* equal parts, each of width $\Delta x = \frac{b-a}{n}$, and choose a number x_k from the *k*th subinterval. Form the sum

$$[f(x_1)+f(x_2)+\cdots+f(x_n)]\Delta x$$

called the Riemann Sum.

Then the definite integral of *f* on the interval $a \le x \le b$, denoted by $\int_{a}^{b} f(x) dx$, is the limit of the Riemann sum as $n \to +\infty$; that is,

$$\int_a^b f(x) \, dx = \lim_{n \to +\infty} [f(x_1) + f(x_2) + \dots + f(x_n)] \Delta x$$

The Definite Integral

The Fundamental Theorem of Calculus

If the function f(x) is continuous on the interval $a \le x \le b$, then

$$\int_a^b f(x) \, dx = F(x) \Big|_a^b = F(b) - F(a)$$

where F(x) is any antiderivative of f(x) on $a \le x \le b$.

Example (#4) Evaluate $\int_{1}^{4} (5-2t) dt$.

The Definite Integral

Area as a Definite Integral

If f(x) is continuous and $f \ge 0$ on the interval $a \le x \le b$, then the region under the curve y = f(x) over the interval $a \le x \le b$ has area given by the definite integral $\int_a^b f(x) dx$.

Example (#38)

Find the area of the region that lies under the curve $y = \sqrt{x}(x+1)$ over the interval $0 \le x \le 4$.

Let *f* and *g* be continuous on $a \le x \le b$. Then

The constant multiple rule:

$$\int_{a}^{b} kf(x) \ dx = k \int_{a}^{b} f(x) \ dx \quad \text{for constant } k$$

The sum rule:

$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

The difference rule:

$$\int_a^b [f(x) - g(x)] dx = \int_a^b f(x) dx - \int_a^b g(x) dx$$

Let *f* and *g* be continuous on $a \le x \le b$. Then

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

The subdivision rule:

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

Example (#36)

Let f(x) and g(x) be continuous on $-3 \le x \le 1$ and satisfy

$$\int_{-3}^{1} f(x) \, dx = 0 \quad \int_{-3}^{1} g(x) \, dx = 4$$

Evaluate
$$\int_{-3}^{1} [2f(x) + 3g(x)] dx.$$

Example (#32)

Let g(x) be continuous on $-3 \le x \le 2$ and satisfies

$$\int_{-3}^{2} g(x) \, dx = -2 \quad \int_{-3}^{1} g(x) \, dx = 4$$

Evaluate
$$\int_{1}^{2} g(x) dx$$
.