5.1. Antidifferentiation: The Indefinite Integral

Antidifferentiation
A function $F(x)$ is said to be an antiderivative of $f(x)$ if

$$
F^{\prime}(x)=f(x)
$$

for every x in the domain of $f(x)$. The process of finding antiderivatives is called antidifferentiation or indefinite integration.

Example
Verify that $F(x)=\frac{1}{3} x^{3}+5 x+2$ is an antiderivative of $f(x)=x^{2}+5$.

The Indefinite Integral

Fundamental property of Antiderivatives
If $F(x)$ is an antiderivative of the continuous function $f(x)$, then any other antiderivative of $f(x)$ has the form $F(x)+C$ for some constant C.

The Indefinite Integral
The family of all antiderivatives of $f(x)$ is written

$$
\int f(x) d x=F(x)+C
$$

and is called the indefinite integral of $f(x)$.
The integral symbol is \int, the function $f(x)$ is called the integrand, C is the constant of integration, and $d x$ is a differential that indicates x is the variable of integration.

Rules for Integrating Common Functions

- The constant rule: $\int k d x=k x+C$ for constant k
- The power rule: $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ for all $n \neq-1$
- The logarithmic rule: $\int \frac{1}{x} d x=\ln |x|+C$ for all $x \neq 0$
- The exponential rule: $\int e^{k x} d x=\frac{1}{k} e^{k x}+C$ for $k \neq 0$

Example
Find these integrals:
a. $\int x^{15} d x$
b. $\int e^{3 x} d x$

Algebraic Rules for Indefinite Integration

- The constant multiple rule:

$$
\int k f(x) d x=k \int f(x) d x \quad \text { for constant } k
$$

- The sum rule:

$$
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x
$$

- The difference rule:

$$
\int[f(x)-g(x)] d x=\int f(x) d x-\int g(x) d x
$$

The Indefinite Integral

Example (\#6)
Find the indefinite integral

$$
\int 3 e^{x} d x
$$

The Indefinite Integral

Example (\#10)
Find the indefinite integral

$$
\int\left(\frac{1}{x^{2}}-\frac{1}{x^{3}}\right) d x
$$

The Indefinite Integral

Example (\#22)
Find the indefinite integral

$$
\int y^{3}\left(2 y+\frac{1}{y}\right) d y
$$

The Initial Value Problem

A differential equation is an equation that involves derivatives. An initial value problem is a problem that involves solving a differential equation subject to a specified initial condition.

Example (\#34)
Solve the initial value problem:

$$
\frac{d y}{d x}=\frac{x+1}{\sqrt{x}} \quad \text { where } \quad y=5 \quad \text { when } \quad x=4
$$

The Initial Value Problem

Example (\#36)
Find the function $f(x)$ whose tangent line has slope $3 x^{2}+6 x-2$ for each value of x and whose graph passes through the point $(0,6)$.

