4.3. Differentiation of Logarithmic and Exponential Functions

Derivative of $\ln x$

$$
\frac{d}{d x}(\ln x)=\frac{1}{x} \quad \text { for } \quad x>0
$$

Example Differentiate the function $f(x)=x \ln \sqrt{x}$.

Differentiation of Logarithmic Functions

The Chain Rule for Logarithmic Functions
If $u(x)$ is a differentiable function of x, then

$$
\frac{d}{d x}[\ln u(x)]=\frac{u^{\prime}(x)}{u(x)}
$$

Example
Differentiate the function $f(x)=\ln \left(x^{2}+1\right)$.

Differentiation of Logarithmic Functions

Example
Differentiate the function $f(x)=\ln \left(x^{3}-5 x+4\right)$.

Differentiation of Logarithmic Functions

Example

Find an equation for the tangent line to $y=x+\ln x$ at the point where $x=e$.

Differentiation of Exponential Functions

The Derivative of the Exponential Function

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x} \quad \text { for every real number } \quad x
$$

Example
Differentiate the function $f(x)=\frac{e^{x}}{x}$.

Differentiation of Exponential Functions

The Chain Rule for Exponential Functions
If $u(x)$ is a differentiable function of x, then

$$
\frac{d}{d x} e^{u(x)}=e^{u(x)} u^{\prime}(x)
$$

Example
Differentiate the function $f(x)=x e^{2 x}$.

Differentiation of Exponential Functions

Example

Find the largest and smallest values of the function
$F(x)=e^{x^{2}-2 x}$ over the closed interval $0 \leq x \leq 2$.

Logarithmic Differentiation

Differentiating a function that involves products, quotients, or powers can often be simplified by first taking the logarithm of the function.

Step 1. Take logarithms of both sides of the expression for $f(x)$ and simplify the resulting equation.

Step 2. Use the chain rule to differentiate both sides.

Step 3. Multiply both sides with $f(x)$ to get $f^{\prime}(x)$.

Logarithmic Differentiation

Example

Use logarithmic differentiation to find the derivative of
$f(x)=\sqrt[4]{\frac{2 x+1}{1-3 x}}$.

Logarithmic Differentiation

Example

Use logarithmic differentiation to find the derivative of
$f(x)=\frac{e^{3 x}\left(x^{2}+5\right)}{(1-x)^{5}}$.

