4.2. Logarithmic Functions

If x is a positive number, then the logarithm of x to the base $b(b > 0, b \neq 1)$, denoted $\log_b x$, is the number y such that $b^y = x$; that is,

 $y = \log_b x$ if and only if $b^y = x$ for x > 0

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example Evaluate log₁₀ 1,000.

Example Solve the equation $\log_4 x = \frac{1}{2}$.

Properties of Logarithms

Let $b(b > 0, b \neq 1)$ be any logarithmic base. Then,

 $\log_b 1 = 0$ and $\log_b b = 1$

and if u and v are any positive numbers, then

- The equality rule: $\log_b u = \log_b v$ if and only if u = v
- The product rule: $\log_b(uv) = \log_b u + \log_b v$
- The power rule: $\log_b u^r = r \log_b u$ for any real number r

• The quotient rule:
$$\log_b \left(\frac{u}{v}\right) = \log_b u - \log_b v$$

• The inversion rule:
$$\log_b b^u = u$$

Properties of Logarithms

Example

Use logarithm rules to rewrite each of the following expressions in terms of $\log_3 2$ and $\log_3 5$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

a. log₃ 270

b.
$$\log_3\left(\frac{64}{125}\right)$$

Properties of Logarithms

Example

Use logarithm rules to simplify each of the following expression.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

a. $\log_3(x^3y^{-4})$

b.
$$\log_7(x^3\sqrt{1-y^2})$$

The Natural Logarithm

The logarithm $\log_e x$ is called the natural logarithm of x and is denoted by $\ln x$; that is,

$$y = \ln x$$
 if and only if $e^y = x$

Properties of the Natural Logarithm

For positive numbers u and v,

- The equality rule: $\ln u = \ln v$ if and only if u = v
- The product rule: $\ln(uv) = \ln u + \ln v$
- The power rule: $\ln u^r = r \ln u$ for any real number r
- The quotient rule: $\ln\left(\frac{u}{v}\right) = \ln u \ln v$
- Special values: In 1 = 0 and In e = 1

The Natural Logarithm

The Inverse Relationship between e^x and $\ln x$ $e^{\ln x} = x$ for x > 0 and $\ln e^x = x$ for all x

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

Solve the following equations.

a. $-2 \ln x = 3$

b.
$$\ln x = 2(\ln 3 - \ln 5)$$

c.
$$\frac{5}{1+2e^{-x}}=3$$

Conversion Formula for Logarithms

If *a* and *b* are positive numbers with $b \neq 1$, then

$$\log_b a = \frac{\ln a}{\ln b}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Example Find $\log_5 3$.