4.2. Logarithmic Functions

If x is a positive number, then the logarithm of x to the base $b(b>0, b \neq 1)$, denoted $\log _{b} x$, is the number y such that $b^{y}=x$; that is,

$$
y=\log _{b} x \quad \text { if and only if } \quad b^{y}=x \quad \text { for } x>0
$$

Example
Evaluate $\log _{10} 1,000$.

Example
Solve the equation $\log _{4} x=\frac{1}{2}$.

Properties of Logarithms

Let $b(b>0, b \neq 1)$ be any logarithmic base. Then,

$$
\log _{b} 1=0 \quad \text { and } \quad \log _{b} b=1
$$

and if u and v are any positive numbers, then

- The equality rule: $\log _{b} u=\log _{b} v$ if and only if $u=v$
- The product rule: $\log _{b}(u v)=\log _{b} u+\log _{b} v$
- The power rule: $\log _{b} u^{r}=r \log _{b} u$ for any real number r
- The quotient rule: $\log _{b}\left(\frac{u}{v}\right)=\log _{b} u-\log _{b} v$
- The inversion rule: $\log _{b} b^{u}=u$

Properties of Logarithms

Example

Use logarithm rules to rewrite each of the following expressions in terms of $\log _{3} 2$ and $\log _{3} 5$.
a. $\log _{3} 270$
b. $\log _{3}\left(\frac{64}{125}\right)$

Properties of Logarithms

Example

Use logarithm rules to simplify each of the following expression.
a. $\log _{3}\left(x^{3} y^{-4}\right)$
b. $\log _{7}\left(x^{3} \sqrt{1-y^{2}}\right)$

The Natural Logarithm

The logarithm $\log _{e} x$ is called the natural logarithm of x and is denoted by $\ln x$; that is,

$$
y=\ln x \quad \text { if and only if } \quad e^{y}=x
$$

Properties of the Natural Logarithm
For positive numbers u and v,

- The equality rule: $\ln u=\ln v$ if and only if $u=v$
- The product rule: $\ln (u v)=\ln u+\ln v$
- The power rule: $\ln u^{r}=r \ln u$ for any real number r
- The quotient rule: $\ln \left(\frac{u}{v}\right)=\ln u-\ln v$
- Special values: $\ln 1=0$ and $\ln e=1$

The Natural Logarithm

The Inverse Relationship between e^{x} and $\ln x$ $e^{\ln x}=x$ for $x>0$ and $\ln e^{x}=x$ for all x

Example

Solve the following equations.
a. $-2 \ln x=3$
b. $\ln x=2(\ln 3-\ln 5)$
c. $\frac{5}{1+2 e^{-x}}=3$

Conversion Formula for Logarithms

If a and b are positive numbers with $b \neq 1$, then

$$
\log _{b} a=\frac{\ln a}{\ln b}
$$

Example
Find $\log _{5} 3$.

