Definition of b^n for rational values of n (and b > 0) i

Integer Powers: If n is a positive integer,

$$b^n = \underbrace{b \cdot b \cdots b}_{n \text{ factors}}$$

Fractional Powers: If n and m are positive integers,

$$b^{n/m} = (\sqrt[m]{b})^n = \sqrt[m]{b^n}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Negative Powers: $b^{-n} = \frac{1}{b^n}$
- Zero Power: $b^0 = 1$

Definition

If *b* is a positive number other than 1 ($b > 0, b \neq 1$), there is a unique function called the exponential function with base *b* that is defined by

 $f(x) = b^x$ for all real number x

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Example

Sketch the graphs of $y = 2^x$ and $y = \left(\frac{1}{2}\right)^x$.

Definition

If *b* is a positive number other than 1 ($b > 0, b \neq 1$), there is a unique function called the exponential function with base *b* that is defined by

 $f(x) = b^x$ for all real number x

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

Sketch the graphs of
$$y = 2^x$$
 and $y = \left(\frac{1}{2}\right)^x$.

Basic Properties of Exponential Functions

For bases *a*, *b* and any real numbers *x*, *y*, we have

• The equality rule: $b^x = b^y$ if and only if x = y

(ロ) (同) (三) (三) (三) (○) (○)

- The product rule: $b^x b^y = b^{x+y}$
- The quotient rule: $\frac{b^x}{b^y} = b^{x-y}$
- The power rule: $(b^x)^y = b^{xy}$
- The multiplication rule: $(ab)^x = a^x b^x$
- The division rule: $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$

Example

Evaluate the given expression.

a. 8^{2/3}

b.
$$(4^{2/3})(2^{2/3})$$

c.
$$\frac{(3^{1.3})(3^{2.5})}{3^{3.2}}$$

d.
$$(x^{3/2})^{-4/3}$$

(ロ) (型) (主) (主) (三) の(で)

Example

Find all real numbers *x* that satisfy the given equation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

a. $3^{x}2^{2x} = 144$

b.
$$2^{3-x} = 4^x$$

The natural exponential base

The natural exponential base is the number e defined by

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
$$\approx 2.71828...$$

(ロ)、(型)、(E)、(E)、 E、のQの