3.4. Optimization

Absolute Maxima and Minima of a function
Let f be a function defined on an interval / containing the number c. Then

- $f(c)$ is the absolute maximum of f on $/$ if $f(c) \geq f(x)$ for all x in I.
- $f(c)$ is the absolute minimum of f on $/$ if $f(c) \leq f(x)$ for all x in I.
Collectively, absolute maxima and minima are called absolute extrema.

Absolute Extrema on a Closed interval

How to Find the Absolute Extrema of a Continuous
Function f on $a \leq x \leq b$
Step 1. Find all critical numbers of f in $a<x<b$.
Step 2. Compute $f(x)$ at the critical numbers found in step 1 and at the endpoints $x=a$ and $x=b$.
Step 3. The largest and smallest values found in step 2 are, respectively, the absolute maximum and absolute minimum values of $f(x)$ on $a \leq x \leq b$.

Absolute Extrema on a Closed interval

Example
Find the absolute maximum and absolute minimum (if any) of

$$
f(x)=x^{3}+3 x^{2}+1 ; \quad-3 \leq x \leq 2
$$

Absolute Extrema on a Closed interval

Example

Find the absolute maximum and absolute minimum (if any) of

$$
f(t)=\frac{t^{2}}{t-1} ; \quad-2 \leq t \leq \frac{1}{2} .
$$

Absolute Extrema on a general interval

Example

Find the absolute maximum and absolute minimum (if any) of

$$
f(u)=u+\frac{16}{u} ; \quad u>0
$$

