3.3. Curve Sketching

Vertical Asymptotes
The vertical line $x=c$ is a vertical asymptote of the graph of $f(x)$ if either

$$
\lim _{x \rightarrow c^{-}} f(x)=+\infty \quad(\text { or }-\infty)
$$

or

$$
\lim _{x \rightarrow c^{+}} f(x)=+\infty \quad(\text { or }-\infty)
$$

Vertical Asymptotes

Example

Determine all vertical asymptotes of the graph of

$$
g(x)=\frac{2 x^{2}+2 x}{x^{2}-3 x-4}
$$

Horizontal Asymptotes

The horizontal line $y=b$ is a horizontal asymptote of the graph of $f(x)$ if

$$
\lim _{x \rightarrow-\infty} f(x)=b
$$

or

$$
\lim _{x \rightarrow+\infty} f(x)=b
$$

Horizontal Asymptotes

Example

Determine all horizontal asymptotes of the graph of

$$
g(x)=\frac{2 x^{2}+2 x}{x^{2}-3 x-4}
$$

General Procedure for Sketching the Graph

Step 1. Find the domain of $f(x)$.
Step 2. Find and plot all intercepts.
Step 3. Determine all vertical and horizontal asymptotes and draw them.
Step 4. Find $f^{\prime}(x)$ and determine the critical numbers and intervals of increase and decrease.
Step 5. Determine all relative extrema. Plot each relative maximum with a "cap" and each relative minimum with a "cup".
Step 6. Find $f^{\prime \prime}(x)$ and determine intervals of concavity and points of inflection. Plot inflection points with a "twist"
Step 7. Complete the sketch by joining the plotted points.

Curve Sketching

Example Sketch the graph of $f(x)=\frac{4 x}{(x+1)^{2}}$.

Curve Sketching

Example Sketch the graph of $f(x)=\frac{x+3}{x-5}$.

Curve Sketching

Example Sketch the graph of $f(x)=\frac{x+1}{x^{2}+x+1}$.

