3.1. Increasing and Decreasing Functions; Relative

Extrema

Increasing and Decreasing Functions
Let $f(x)$ be a function defined on the interval $a<x<b$, and let x_{1} and x_{2} be two numbers in the interval. Then

- $f(x)$ is increasing on the interval if $f\left(x_{2}\right)>f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$.
- $f(x)$ is decreasing on the interval if $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$.

Intervals of Increase and Decrease

Procedure for using the derivative to determine intervals of increase and decrease

Step 1. Find all values of x for which $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is not continuous, and mark these numbers on a number line. This divides the line into a number of open intervals.
Step 2. Choose a test number c from each interval $a<x<b$ determined in Step 1 and evaluate $f^{\prime}(c)$. Then

- If $f^{\prime}(c)>0, f(x)$ is increasing on $a<x<b$.
- If $f^{\prime}(c)<0, f(x)$ is decreasing on $a<x<b$.

Intervals of Increase and Decrease

Example

Find the intervals of increase and decrease for the function

$$
f(x)=2 x^{5}-5 x^{4}-10 x^{3}+7
$$

Intervals of Increase and Decrease

Example

Find the intervals of increase and decrease for the function

$$
F(x)=\frac{x^{2}}{x-3}
$$

Relative Extrema

Definition

- The graph of the function $f(x)$ is said to have a relative maximum at $x=c$ if $f(c) \geq f(x)$ for all x in an interval $a<x<b$ containing c.
- Similarly, the graph has a relative minimum at $x=c$ if $f(c) \leq f(x)$ on such an interval.
- Collectively, the relative maxima and minima of f are called its relative extrema.

Definition

A number c in the domain of $f(x)$ is called a critical number if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist. The corresponding point $(c, f(c))$ on the graph of $f(x)$ is called a critical point for $f(x)$.

Relative Extrema

Relative extrema can only occur at critical points.

The First Derivative Test for Relative Extrema Let c be a critical number for $f(x)$. Then the critical point $(c, f(c))$ is

- A relative maximum if $f^{\prime}(x)>0$ to the left of c and $f^{\prime}(x)<0$ to the right of c.
- A relative minimum if $f^{\prime}(x)<0$ to the left of c and $f^{\prime}(x)>0$ to the right of c.
- Not a relative extremum if $f^{\prime}(x)$ has the same sign on both sides of c.

Relative Extrema

Example

Find all critical numbers of the function

$$
f(x)=2 x^{5}-5 x^{4}-10 x^{3}+7
$$

and classify each critical point as a relative maximum, a relative minimum, or neither.

Relative Extrema

Example

Find all critical numbers of the function

$$
F(x)=\frac{x^{2}}{x-3}
$$

and classify each critical point as a relative maximum, a relative minimum, or neither.

Relative Extrema

Example

Find all critical numbers of the function

$$
f(x)=x \sqrt{4-x}
$$

and classify each critical point as a relative maximum, a relative minimum, or neither.

Sketching the graph

Prodecure for sketching the graph of a continuous function using the derivative

Step 1. Determine the domain of $f(x)$. Set up a number line restricted to include only those numbers in the domain.
Step 2. Find $f^{\prime}(x)$ and mark each critical number on the restricted number line. Then analyze the sign of $f^{\prime}(x)$ to determine the intervals of increase and decrease for $f(x)$.
Step 3. For each critical number c, find $f(c)$ and plot the critical point $P(c, f(c))$ on a plane. Plot intercepts and other key points that can be easily found.
Step 4. Sketch the graph of f as a smooth curve joining the critical points in such a way that it rises where $f^{\prime}(x)>0$, falls where $f^{\prime}(x)<0$, and has a horizontal tangent where $f^{\prime}(x)=0$.

Sketching the graph

Example

Use calculus to sketch the graph of

$$
f(x)=2 x^{5}-5 x^{4}-10 x^{3}+7
$$

Sketching the graph

Example

Use calculus to sketch the graph of

$$
F(x)=\frac{x^{2}}{x-3}
$$

Sketching the graph

Example

Use calculus to sketch the graph of

$$
f(x)=\frac{x+1}{x^{2}+x+1}
$$

