2.6. Implicit Differentiation and Related Rates

・ロト・四ト・モート ヨー うへの

Example
Find
$$\frac{dy}{dx}$$
 if $x + \frac{1}{y} = 4$.

Implicit Differentiation

Suppose an equation defines y *implicitly* as a differentiable function of x. To find the derivative of y,

 Differentiate both sides of the equation with respect to *x*. Remember that *y* is really a *function of x* and use the chain rule when differentiating terms containing *y*.

(ロ) (同) (三) (三) (三) (○) (○)

2. Solve the differentiated equation algebraically for $\frac{dy}{dx}$.

Find
$$\frac{dy}{dx}$$
 using implicit differentiation if $x + \frac{1}{y} = 4$.

Implicit Differentiation

Example
Find
$$\frac{dy}{dx}$$
 if $4x - x^3y^2 = 2y$.

Implicit Differentiation

Example

Find the equation of the tangent line to the curve $x^2y^2 - 3xy = 5x + y + 1$ at the point (0, -1).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ