2.6. Implicit Differentiation and Related Rates

Example
Find $\frac{d y}{d x}$ if $x+\frac{1}{y}=4$.

Implicit Differentiation

Suppose an equation defines y implicitly as a differentiable function of x. To find the derivative of y,

1. Differentiate both sides of the equation with respect to x. Remember that y is really a function of x and use the chain rule when differentiating terms containing y.
2. Solve the differentiated equation algebraically for $\frac{d y}{d x}$.

Example
Find $\frac{d y}{d x}$ using implicit differentiation if $x+\frac{1}{y}=4$.

Implicit Differentiation

Example
Find $\frac{d y}{d x}$ if $4 x-x^{3} y^{2}=2 y$.

Implicit Differentiation

Example

Find the equation of the tangent line to the curve
$x^{2} y^{2}-3 x y=5 x+y+1$ at the point $(0,-1)$.

